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Introduction
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3D microstructures: basis unit cell

Mechanical metamaterials at the

theoretical limit of isotropic elastic

stiffness, nature, 2017

Computational discovery of 

extremal microstructure families, 

Science advance, 2018 

Three-dimensional mechanical 

metamaterials with a twist, 

Science, 2017



• Inverse homogenization problems (IHPs) : [O Sigmund,1994]

Related works
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Targeting at different objectives

 Extreme shear or bulk moduli (Gibiansky and Sigmund, 2000)

 Negative Poisson’s ratios (Theocaris et al., 1997; Shan et al., 2015; Morvaridi et al., 2021)

 Extreme thermal expansion coefficients  (Sigmund and Torquato, 1997)

Ye M, et al. Materials & Design, 2020
Larsen U D et al. Journal of 

microelectromechanical systems, 1997
Zuyu Li, et al. Material & Design, 2022



• High-resolution topology optimization :

Related works
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 Parallel computing (Borrvall and Petersson, 2001; Aage et al., 2015)

 GPU computation (Challis et al.,2014)

 Adaptive mesh refinement (Stainko, 2006; De Sturler et al., 2008; Rong et al., 2022)

Niels Aage et al., Nature, 2017 Jun Wu et al. TVCG, 2016 Träff, Erik A. et al., Thin-Walled 
Structures, 2021



• Open-source solver for IHPs:

Related works
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 PETSc: a multi-CPU framework is used for high-resolution topology optimization.

 TopX.m: Design of materials using topology optimization and energy-based 
homogenization approach in Matlab

PETSc framework TopX



Related works
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Key challenge:   Time and Storage consumption

 Time consumption: equipping and solving large-scale equilibrium equations
High-performance multigrid solver 
(Briggs et al., 2000; Zhu et al., 2010; McAdams et al., 2011; Zhang et al., 2022; Wu et al., 2015)

 Storage consumption: 
Mixed-precision methods
• half precision is 4 times speedup for a double precision (Haidar et al. 2018)
• single-precision calculations take 2.5 times faster than the corresponding double-precision 

calculations (Goddeke and Strzodka, 2010)

Dedicated multigrid solver and the mixed-precision representation is used for a trade-off 
between memory usage, running time, and microstructure quality
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Model formulation
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Input

Output

A unit cell domain which is evenly discretized into M elements. 
Each element is assigned an density variable ρe and a fixed volume ve.

An optimized density variable ρe

Volume constraints

Equilibrium equation

Modulus: bulk / shear / Poisson’s ratio

Bound constraints



Solver for IHPs
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Solving the following cell problem :

The homogenized elastic tensor is determined as: 

Using the engineering notation:

Solver for IHP

1 Compute the displacement field u

2. Compute the homogenized elastic tensor CH and 
the objective function f(CH).

3. Perform sensitivity analysis, i.e., evaluate the 
gradient

4. Update density ρ using       based on the Optimal 
Criteria (OC) method



Optimized GPU Scheme for solving IHPs
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2D illustration for periodic 
boundary conditions.

Data for each vertex. 

Mixed floating-point precision representations. 

The numerical stencils are stored in half-precision (FP16), and 
the rest vectors are stored in single-precision (FP32).

Memory layouts.

Nodal vectors are all stored in the Structure of Array (SoA) format.
The numerical stencils are stored in Array of Structure (AoS) format. 

Padding layers for periodic boundary conditions.

we pad a layer of vertices and elements around the mesh (right figure)

For each vertex v of each level’s mesh, we store the numerical 
stencil Kv, the displacement uv, the force fv, and the residual rv in 
the multigrid implementation. 



• Due to the loss of precision caused by the mixed-precision scheme and the high resolutions, the 
multigrid solver may diverge with a numerical explosion.

Dedicated multigrid solver
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(1) insufficient Dirichlet boundary conditions (2) no materials at corners during optimization

similar to large scale worst case problem
Zhang et al., 2022 



Different precision discussion
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Left: baseline achieved with FP64, while the remaining three results are 
obtained using a mixed-precision scheme combining FP32 and FP16.

The temporal evolution of the relative residual in a multigrid 
solver with different precisions (FP16, FP32, FP64, FP32/FP16 
and FP64/FP32).

To implement the eight color Gauss-Seidel relaxation, we serially launch one computation kernel 
for each subset of the vertices. The performance bottleneck of the multigrid solver is the Gauss-
Seidel relaxation and residual update on the first level mesh.



Results and Discussion
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Results
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Topology optimization of high resolution microstructures: 512 × 512 × 512 

Bulk modulus Shear modulus Poisson’s ratio

B = 0.1094 S=0.0684 R = -0.6644



Symmetry operations
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Three symmetric operations are defined:

• Reflect3：
the reflection symmetry on three planes 
{x = 0.5, y = 0.5, z = 0.5}; 

• Reflect6：
the reflection symmetry on six planes
{x = 0.5, y = 0.5, z = 0.5, x + y = 0, y + z = 0, z + x = 0} ;

• Rotate3
rotation symmetry means that the structure is invariant 
under the rotation of 90◦ around the x, y, z axes that pass 
through the cube domain’s center, as same under their 
compositions;



Density initializations
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Trigonometric functions is used to cover various initial density fields. 

We first try the following basis functions: 

we extend Tnas: Qn = Tn ∪ {p1p2 : p1, p2 ∈ Tn}, where the products of any 
two items in Tn are incorporated. Qnof each element is different. 

(1) We first generate a set of random 
numbers in [−1, 1] as weights;

(2) we use the obtained weights to weight 
the basis functions in Qn and then sum them;

(3) project the sum into [ρmin, 1] via a 
rescaled Sigmoid function



Discussion on Mixed-precision scheme
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• Utilize mixed precision (FP32/FP16) can lead to a 47% reduction comparing with pure 
FP32 in memory consumption.

• The relative error of different precisions in the final bulk modulus is less than 1.1%.



Comparison with Multi-CPU framework
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Initial density field B = 0.1126B = 0.1110 

Maximizing bulk noduli using Multi-CPU framework (Middle) and our framework (Right).

Resolution: 256 × 256 × 256, Volume fraction: 0.3

We implement the multi-CPU framework 
Aage et al. (2015) 

• Computing machine: a cluster with a 
total of 9 nodes, each equipped with 
two Inter Xeon E5-2680 v4 28- core 
CPUs and 128GB memory connected 
by Intel OPA. 

The average time of each iteration for the Multi-CPU framework is around 40.0 seconds, while 
our framework achieves a significantly reduced average time cost of 4.4 seconds.



Extensions on our framework
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Change different optimization objectives

(1)

(2)

Optimizing (21) and (22) using two different initial density 
fields. The graph plots the Poisson’s ratio vs. the number of iterations.

Optimize (2)

Optimize (2) Optimize (1)

Optimize (1)

Optimize (2)
Optimize (1)

Optimize (2)
Optimize (1)



Resolution
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Various resolutions for bulk modulus maximization

Left: 64×64×64. Middle: 128×128×128. Right: 256×256×256. 

There are also more outliers as the resolution becomes lower. 
The lower the resolution, the more likely it is to approach the 
trivial solution.



Volume fraction
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Various volume fractions for bulk modulus maximization 

Left: 10%. Middle: 20%. Right: 30%. 
The resolution is 128×128×128. 

Increasing the resolution of the microstructure would be 
considered in the future to obtain the microstructures 
closer to the upper limit of the theoretical value. 



THANKS FOR YOUR LISTENING!
Questions email  to xiaoyazhai@ustc.edu.cn

24

Reporter: Xiaoya Zhai  
My homepage: https://xiaoyazhai.github.io/
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