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a b s t r a c t

With the advent of additive manufacturing (AM), topology optimization (TO) has become increasingly
important in structural design. A key component of structural design is generating the interior shape of
an object under predefined force conditions and specific constraints. Fabricating such models by layer-
based AM suffers from the problem of adding and removing interior supporting structures, which can
produce artifacts in the final product. In this paper, we propose an algorithm to design a self-supporting
porous structure by integrating overhang constraints into the topology optimization framework. A
minimum thickness constraint is also built into the optimization process to automatically enforce
printability of the resulting structures. We utilize triply periodic minimal surfaces (TPMSs) to represent
interior structures which can be analyzed, optimized and stored directly using analytical functions. We
apply several acceleration methods including super element strategy, multigrid algorithm and GPU-
based solver to handle models comprising of several million of elements efficiently. Numerical results
indicate that the optimized interior structures obtained by our approach exhibit improved printability
as they largely satisfy manufacturing requirements on overhang angles and minimal thicknesses.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Topological optimization is a mathematical method that opti-
izes the interior material distribution of a 3D model to meet
pecific demands on its physical properties, such as resistance
o external loads. It has broad applications in high-tech indus-
ries, such as aerospace [1], automotive [2], architecture [3] and
io-engineering [4]. However, the manufacture of topologically
ptimized structures by using traditional techniques such as
omputer Numerical Control (CNC) is challenging due to the com-
lex geometry of the optimized structures. In the past
ecade, additive manufacturing (3D printing) has emerged as a
evolutionary manufacturing technology that enables the con-
enient fabrication of complex structures. Thus there is a sig-
ificant interest in integrating topological optimization and ad-
itive manufacturing to design and fabricate various optimized
tructures.
In this paper, we focus on the design and fabrication of porous

tructures with additive manufacturing [5]. Porous structures
ffer some desirable properties such as small weight-to-stiffness
atio [6], good buffering protection [7], and excellent thermal con-
uctivity [8]. They are widely used in various fields such as mod-
ling human bones and dentures in medical engineering, fibrous
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materials in civil engineering, metal foam, insulating materials,
sound-absorbing coatings and heat dissipation materials in mate-
rial engineering. Triply periodic minimal surfaces (TPMSs [9]) are
often utilized as a foundational element in constructing porous
structures, as they are mathematically defined as minimal sur-
faces. They are widely used in structural optimization due to
their full connections, high smoothness, non-self-intersections
and quasi-self-supporting properties [10].

Previous investigations of TPMSs have mainly focused on
structure optimization for lightweight [10] or mechanical prop-
erties [11,12]. However, in many cases, the optimized structures
cannot be directly printed by laser-based additive manufacturing
techniques such as Stereolithography Apparatus (SLA) and Fused
Deposition Modeling (FDM) due to overhang regions. Additional
supporting material must be added to support these regions
during the printing process. After the model is printed, then
the supporting material should be removed. This process causes
a waste of materials and produces artifacts on the surface of
the printed model. A meticulous post-processing operation is
crucial to refine the surface of the printed model. Additionally,
the minimum thickness of the structure is a crucial consideration.
If the structure is too thin, the printer may not be able to print
it correctly, leading to a significant impact on the quality of the
printed model.

The goal of this paper is to utilize topology optimization to de-
sign a self-supporting porous structure based on TPMS while en-
suring its stiffness. A structure is considered to be self-supported
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Fig. 1. 3D printing results of four models by our method.
f every point on the surface of the structure has an overhang
ngle smaller than a prescribed threshold [13]. To achieve this,
e use TPMS-based geometry to provide an explicit expres-
ion for the normal of the boundary surface, and we build a
ovel global inequality constraint that guarantees self-supporting
tructures. We also use a weighting scheme to prevent isolated
on-self-supporting points from contributing to a global con-
traint. Furthermore, we discretize the TPMS parameters to obtain
esign variables, resulting in smooth optimized designs without
harp features. A minimal thickness constraint is also imposed
y restricting the design variables in some suitable intervals to
nsure the printability of the models. By minimizing the com-
liance of the structure with the above constraints through a
wo-stage optimization strategy, our method generates printable
nd mechanically optimized porous structures effectively. We
educe the number of design variables through collocation points,
hich further increases the efficiency of our approach. Fig. 1

llustrates some 3D printing models generated by our algorithm.
In summary, the specific contributions of the current paper are

s follows:

• A topology optimization framework is developed to gener-
ate smooth porous structures with a high self-supporting
ratio based on TPMS. We formulated a new global constraint
while a weighting scheme is utilized to filter out small areas
that can be printed.
• Establish the relationship between minimum length con-

straints and the shell thickness of TPMS to ensure the print-
ability of porous structures.
• Apply several acceleration methods, including super ele-

ment strategy, multigrid algorithm, and GPU-based imple-
mentation, have been applied to efficiently solve the
topology optimization problem.

. Related work

.1. Topology optimization

Topology optimization (TO) is an algorithmic process that opti-
izes the material distribution in the design domain according to

he predefined boundary conditions and constraints. Many meth-
ds have been developed to solve the TO problem, such as the
omogenization method [14], solid isotropic material with pe-
alization (SIMP) [15], level set method [16], topology derivative
ethod [17], and moving morphable components (MMC) [18].
mong them, the SIMP method is a very simple and popular
ethod that will be adopted in the current work.
2

2.2. TPMS-based structure optimization

TPMSs have been taken as an efficient representation of
porous structures. Due to the implicit representations of TPMSs,
the properties of porous structures such as porosity and volume
fraction can be easily achieved by setting suitable parameters of
TPMSs [19,20]. Complex operations such as boolean, modulation,
and convolutions can be applied to TPMSs [21,22].

In order to mimic natural porous structures and fulfill the
demands of diverse applications, graded TPMS [23,24], heteroge-
neous TPMS [25,26], multi-scale TPMS [10,27] were designed. In
addition, TPMSs have been widely used in the design of articular
scaffolds due to their large surface areas and fully connected
structures [23,28].

In recent years, TPMSs have gradually attracted the atten-
tion from the community of computer graphics and computer-
aided design. Zhu et al. [29] designed a novel TPMS-based porous
scaffold with optimized thickness to tune both the mechanical
and biological properties. VISWANATH et al. [30] applied 3D
convolutional neural network (CNN) models for the topology
optimization of a unit cell based on TPMS. Li et al. [31] proposed
an optimization strategy for designing models of gyroid-based
functionally graded cellular structures. Hu et al. [10] constructed
a multi-scale porous structure by adding parameters to control
the period and volume of the TPMSs. Later they proposed an
efficient TPMS-based structural optimization method [32] with-
out remeshing operation in finite element computation. Wang
et al. [33] adopted the optimization framework for the problem of
steady-state heat conduction. However, these works do not take
manufacturing constraints into consideration, and the resulting
porous structures are hard to manufacture without additional
supporting material.

2.3. Fabrication requirements

Structures generated by topology optimization are typically
complex in geometry, with large overhang regions and small
branches. To fabricate these structures using additive manufac-
turing, additional overhang constraints and minimal length con-
straints should be added. However, adding supporting material
leads to material waste, longer fabrication time, and lower surface
quality. Therefore, minimizing overhang regions and detecting
and removing small branches has become an area of interest.

Many efforts have been proposed to reduce additional support
materials in additive manufacturing, including optimizing the
direction of fabrication [34,35] and modifying the geometries of
the structures [36,37]. Paul and Anand [38] proposed a strategy
to find an optimal printing direction that minimizes the volume



N. Zheng, X. Zhai and F. Chen Computer-Aided Design 161 (2023) 103542

o
b
h
s
o
i
e
m
m
g
o
b
r
l
d
t
p
e
Y
d
t
s
o
o
p

t
t
p
i
a
h
p

3

3

t
s
r
a

t

w
T
a
l
p
c
a

t
s
s

ϕ

d
T

i
t
P
r
b
n

ϕ

w
y

3

s
d
t
i
f
φ

φ

w
b
m
o
i
c
s

φ

f support structures. Qian [39] introduced constraints on the
oundary shape, such as undercut control and minimal over-
ang angle control, that are helpful in reducing the need for
upport structures. Wang and Qian [40] proposed a method that
ptimizes both the build orientation and density field to sat-
sfy overhang angle constraints for self-supporting parts. Allaire
t al. [41] presented a new mechanical constraint functional that
imics the layer-by-layer construction process used in additive
anufacturing technologies. Wu et al. [13] proposed a method to
enerate infill structures that satisfy manufacturing requirements
n overhang-angle and wall-thickness, but is limited to rhom-
ic cells. Mizendehdel and Suresh [37] proposed a method for
educing support structures in additive manufacturing through
evel set topology optimization. Garaigordobil et al. [42] intro-
uced an overhang constraint for controlling support material in
he manufacturing of compliant mechanisms. Xu et al. [43] pro-
osed a support-free infill structure without optimization. Choi
t al. [44] introduced a novel method for support-free hollowing.
an et al. [45] utilized TPMS to define channels that adequately
istribute injected materials in the shape interior. They stretched
he optimized model vertically in a post-processing step to obtain
elf-supporting structures. Different from the previous approach,
ur method includes self-supporting constraints within the topol-
gy optimization framework to generate strong connected and
orous objects based on an efficient TPMS-based representation.
For the minimum thickness problem, Poulsen [46] proposed

o deal with it by imposing a minimum length scale constraint in
opology optimization. Later Guest et al. [47] and Zhou et al. [48]
resented a filtering-threshold topology optimization scheme to
mprove computational efficiency. In our paper, we establish
ssociations between TPMS-based geometries and external over-
ang constraints and minimal length constraints to achieve better
rinting performance.

. Geometric representations of porous structures

.1. Representations of TPMS

TPMSs are minimal surfaces that have a crystalline struc-
ure and are triply periodic in the sense that they repeat them-
elves in three independent directions. TPMSs have two main
epresentations—Enneper-Weierstrass parametric representation
nd Fourier series representation.
According to the Enneper-Weierstrass parametric representa-

ion, TPMSs can be expressed analytically as [49,50]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = Re

(
eiθ
∫ ω

ω0

(
1− τ 2

)
R(τ )dτ

)
;

y = Re
(
eiθ
∫ ω

ω0
i
(
1+ τ 2

)
R(τ )dτ

)
;

z = Re
(
eiθ
∫ ω

ω0
2τR(τ )dτ

)
;

(1)

here i is the imaginary unit, and R(τ ) is a complex function.
hus, the Cartesian coordinates of any point on a minimal surface
re expressed as the real parts (Re) of some complex (curvi-
inear) integrals, evaluated in the complex plane from a fixed
oint ω0 to a variable point ω. The Weierstrass function R(τ )
ompletely specifies the local differential geometry of the surface
nd guarantees that the described surface is a minimal surface.
However, only a few kinds of TPMSs can be generated from

he parametric function (1). An alternative mathematical repre-
entation for TPMSs can be approximated by the periodic nodal
urface defined in terms of Fourier series [19]:

(r) =
K∑

Akcos
[
2π (hk · r)

λ
+ Pk

]
= C, (2)
k=1 k

3

Fig. 2. Illustration of the geometry representation of a porous structure. (a)
A P surface with tx = ty = tz = 1, C = 0.427; (b) Corresponding signed
istance fields on 2D plane (from left to right: φ1 , φ2 and φs; (c) Corresponding
PMS-based porous structure.

n which r = (x, y, z) ∈ R3 is a location vector, Ak is the ampli-
ude, hk is the kth reciprocal lattice vectors, λk is the period factor,
k is the function phase and C is a constant. Earlier methods [51]
eported that the topology of TPMSs is satisfactorily reproduced
y truncating the series to the leading term, giving the following
odal approximations of P, G and D surfaces:

ϕp(r) =cos(2π txx)+ cos(2π tyy)+ cos(2π tzz) = C,

ϕG(r) =sin(2π txx)cos(2π tyy)+ sin(2π tzz)cos(2π txx)
+ sin(2π tyy)cos(2π tzz) = C,

D(r) =cos(2π txx)cos(2π tyy)cos(2π tzz)
− sin(2π txx)sin(2π tyy)sin(2π tzz) = C,

(3)

here tx, ty and tz represent periodic parameters along x-axis,
-axis and z-axis, respectively, and C is a nonzero constant.

.2. TPMS-based porous structures

Signed distance fields are effective representations of porous
tructures. In this paper, we assume that positive and negative
istances determine the inside and outside of a structure, respec-
ively. A TPMS-based porous structure can be described by the
ntersection of two solids that are defined by two signed distance
ields:

1 = ϕ + C,

2 = C − ϕ,

φs = min(φ1, φ2),
(4)

here φ1 and φ2 represent two signed distance fields determined
y the TPMS function ϕ, and C is the physical offset which
easures the algebraic distance of two surfaces φi = 0 (i = 1
r 2) and φ = 0. The porous structure is defined by φs > 0 which
s the intersection of two solids φ1 > 0 and φ2 > 0. In order to
alculate the derivatives of φs(r) at any point r, we introduce a
mooth approximation of φs(r) by:

s(r) = φ1(r)+ φ2(r)−
√

φ2
1 (r)+ φ2

2 (r),

= 2C −
√
2C2 + 2ϕ2.

(5)

An example is illustrated in Fig. 2, where ϕ is the P surface
with tx = ty = tz = 1 and C = 0.427. Fig. 3 show two sequences
of porous structures for different parameter values of tx, ty, tz and
C . Variations of porosity in one unit can be clearly observed.

In our work, a TPMS-based porous structure is optimized
inside a given model ΩModel:

φ = min(φ , φ ), (6)
opt s Model
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Fig. 3. TPMS-based porous structures. (a) – (d) show the structures with
different period parameters along z-axis with tx = ty = 4 and C = 0.427. (e) –
(h) show the structures with different thickness parameters with tx = ty = tz =
.

here φModel is the signed distance field of the shape ΩModel. The
inal porous structure that fills in the interior of ΩModel can be
resented as φopt > 0.

.3. Design variable distribution function

In the minimal surface representations (3), tx(r), ty(r), tz(r) and
(r) are free parameters that depend on the location vector r and
etermine the shapes of the minimal surfaces. They are the design
ariables of our TO problem. In order to efficiently represent and
ompute these variables, we interpolate them using radial basis
unctions at a set of collocation points {ri}ni=1 that are uniformly
rranged in space [52]:

x(r) =
n∑

k=1

αkf (∥r− rk∥2)+
q∑

l=1

βlpl(r), (7)

here f (x) = x2 log(x) is the polyharmonic radial basis function,
is the number of the collocation points, q is the number of
olynomial basis functions, pl(r), l = 1, . . . , q are polynomial
asis functions.
There are q additional degrees of freedom in (7), and they are

ixed by q additional homogeneous equations. This augmented
ystem has a unique solution:
n

k=1

αkf (∥ri − rk∥2)+
q∑

l=1

βlpl(ri) = tx(ri), 1 ≤ i ≤ n;

n∑
k=1

αkpl(rk) = 0, 1 ≤ l ≤ q;

(8)

here tx(ri) is the x-axis period variable at the ith collocation
oint. We solve the linear system of Eqs. (8) by the known
tx(ri)}ni=1 in the previous iteration to compute the unknown
oefficient {αk}

n
k=1 and {βl}

q
l=1. Thus the expression for tx(r) is

btained. The variable distribution functions of ty(r), tz(r) and
(r) can be computed in a similar way.

. Methods

.1. Problem and formulation

roblem. The goal of the current work is to find an interior
aterial distribution φopt with self-supporting requirement and
aximum stiffness under predefined volume fraction in a given
esign domain φ .
M

4

ormulation. This problem can be formulated as the following
ptimization problem:

P) : min
tx(r),ty(r),tz (r),C(r)

I = UTF, (9)

s.t. V (tx(r), ty(r), tz(r), C(r)) ≤ V0, (10)

α ≤ α0, (11)

KU = F, (12)

tmin ≤ tx(r), ty(r), tz(r) ≤ tmax, (13)

Cmin ≤ C(r) ≤ Cmax, (14)

here tx(r), ty(r) and tz(r) denote the periodic variables along
x, y, z axes respectively, C(r) represents the thickness variable
which satisfies the printing minimal thickness constraint, and
V (tx(r), ty(r), tz(r), C(r)) and V0 represent the volume fraction of
the optimized structure and a predefined threshold. The inequal-
ity (11) is the overhang constraints defined on surface points by
the printing tolerance angle α0, and (12) is the static equilibrium
quation. The inequalities (13) and (14) are constraints for the
esign variables tx(r), ty(r), tz(r), C(r).
The value ρi of the sign distance field φopt at ri ∈ ΩM is

calculated by (5) as:

ρi = 2C −
√
2C2 + 2ϕ2(tx(ri), ty(ri), tz(ri)), (15)

hus, the density distribution ρ i can be truncated by ρi:

ρ i =

{
0, ρi < 0;
1, ρi ≥ 0. (16)

To obtain a differentiable variable ρ̄i, (16) is replaced by its
continuous approximation [18]:

ρi = Hξ (ρi) =

⎧⎪⎨⎪⎩
1, ρi > ξ ;

1
2

(
ρi
ξ
−

ρ3
i

3ξ3

)
+

1
2 , −ξ ≤ ρi ≤ ξ ;

0, ρi < −ξ .

(17)

here ξ is the parameter that controls the magnitude of regular-
zation. Based on our experience, we typically recommend ξ to be
ithin the range of [0.04, 0.15]. Within this range, the optimized
tructures exhibit similar physical properties, and the choice of ξ
an be adjusted depending on the specific design requirements.
n our implementation, we set ξ = 0.15.

.2. Fabrication constraints

.2.1. Overhang constraints
The main goal of current work is to optimize the interior

tructure of an object such that it is self-supported as much as
ossible. Thus we need to handle overhang constraints.
Overhang regions in additive manufacturing are defined by

he subtended angle [37] which is the angle between the print-
ng direction np and the normal vector of a boundary point, as
hown in Fig. 4(a). A surface point is considered unprintable if
he subtended angle α exceeds the user-defined threshold α0 (=
3π
4 ). Boundary points with α ≤ α0 are considered self-supported
marked by blue), and otherwise the surface points (marked by
ed) are overhanging points which require material support, as
llustrated in Fig. 4(b).

xplicit overhang constraints. In our case, TPMS is defined in
he interior of an object and may stretch and deform due to
arying local frequencies and amplitudes. This may yield over-
ang parts during fabrication, as illustrated in Fig. 4(c). In this
ork, the surface points r∗ = {r∗

k̄
}
M
k̄=1

of the TPMS-based porous
structure are extracted by the marching cube method [53] from
φ , as shown in Fig. 4(d). Where M is the number of surface
opt
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Overhang regions. (d) Surface points of the model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
w
t
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w

w

a

p

points The normal of each point nφ(r∗k̄) can be easily computed
ccording to the implicit representation φopt in (5). In order to be
elf-supported, a surface point r∗

k̄
must obey the rule:

(r∗k̄) ≤ α0, ∀k̄; (18)

r equivalently,

(r∗k̄) =
cos(α(r∗

k̄
))

cos(α0)
=

nφ(r∗k̄) · npnφ(r∗k̄)
 np

 cosα0

=
nφz(r∗k̄)nφ(r∗k̄)
 cosα0

≤ 1, ∀k̄;
(19)

here nφ = (nφx, nφy, nφz) is the normal vector of the boundary
urface at point r∗

k̄
, np is the printing direction, and we set it

o be the positive direction of the z-axis (0, 0, 1). Notice that
19) clearly holds at surface point whose z-component of the
ormal vector is non-negative, i.e., nφz ≥ 0. Thus, we only need to
onsider the constraints (19) at the surface points r∗− = {r∗k}

N
k=1

ith nφz < 0, where N is the number of surface points with a
egative z-component of the normal vector.
However, it is very inefficient to directly impose the overhang

onstraints (19) during the optimization process. The reasons are
wofold:

• The overhang constraints (19) are nonlinear. A large num-
ber of nonlinear constraints causes the optimization very
inefficient.
• Imposing the overhang constraints on every point of the

boundary surface is too strict. In fact, additional support
structures are not needed in small overhang regions. There-
fore, the overhang constraints corresponding to these points
can be removed. Fig. 5 illustrates removable overhang re-
gions in a model.

odified overhang constraints. To overcome the first challenge,
e integrate a large number of overhang constraints (19) into one
lobal constraint:

g =
1
N

N∑
k=1

g

(
nφz(r∗k)nφ(r∗k)
 cosα0

)
≤ 1+ ϵ, (20)

where N is the number of surface points with a negative z-
component of the normal vector, and ϵ is a small positive value
for the relaxation purpose. In our implementation, ϵ = 0.05 is
adopted. The function g(x) is employed to penalize the quantity
A(r∗k) when A(r∗k) > 1 and is defined as:

g(x) =
{

(x− 1)2 + 1, x ≥ 1; (21)
1, x < 1.

5

Fig. 5. Removable small overhang regions. All the overhang regions are colored
in the model, green regions represent small overhang regions that can be re-
moved and orange regions represent actual overhang regions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

In order to handle the second challenge, we introduce a filtering
operation of small overhang regions by weighting a small area
filtering function w(r∗) to the hanging constraints at surface
points r∗− = {r∗k}

N
k=1. Then the global constraint (20) is modified

as:

Ãg =

N∑
k=1

w̃(r∗k)g

(
nφz(r∗k)nφ(r∗k)
 cosα0

)
≤ 1+ ϵ, (22)

here w̃(r∗k) is the normalized weight function corresponding to
he small area filtering function w(r∗k):

˜ (r∗k) =
w(r∗k)∑N
i=1 w(r∗i )

, (23)

nd

(r∗k) =

{ 2

1+e
2(1−s(r∗k ))

η

+ 1, A(r∗k) > 1;

1, A(r∗k) ≤ 1;
(24)

whose graph is plotted in Fig. 6 in case that A(r∗k) > 1.
The function s(r∗k) represents the ratio of the overhang points

in a neighborhood of point r∗k :

s(r∗k) =
card(Scons(r∗k, δ))
card(S(r∗k, δ))

, (25)

here S(r∗k, δ) is the set of points in a neighborhood of r∗k , that
is, S(r∗k, δ) = {r

∗
∈ r∗− | |r∗ − r∗k | ≤ δ}, Scons(r∗k, δ) is the set of

overhang points in the neighborhood S(r∗k, δ), that is, Scons(r
∗

k, δ) =
{r∗ ∈ S(r∗k, δ) | A(r

∗) > 1}, δ > 0 is the radius of the neighborhood
ball, and card(S) represents the number of points in the set S. The
parameter η in w(r∗k) is related to the size of a removable region
nd will be discussed in section 5.3.2.
Fig. 7 illustrates the geometric meaning of s(r∗k). The yellow

oints are the overhang points which we deal with. The green
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Fig. 6. The small area filtering function with different parameters.

Fig. 7. Illustration of small area filtering functions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

balls show the corresponding neighborhood of points r∗k . Re-
movable small overhang regions are colored green and actual
overhang regions are colored orange as before. From the zoom
views on the right, we can see that s(r∗k) in the actual overhang
egion has a large value while s(r∗k) is small in the green region.

Based on the definition of small area filtering function w(r∗),
elf-supporting points and overhang points on the removable
verhang regions have a small weight. On one hand, this oper-
tion filters out small overhang areas that can be printed, and on
he other hand, it helps to reduce the number of large overhang
egions in the optimization process.

.2.2. Minimal thickness constraints
Additive manufacturing requires a minimum thickness of

rinted objects. When the size of a part of the printed model is
maller than the printable size of a printer, the part of the model
ill be unprintable.
To incorporate minimal thickness constraints into the opti-

ization process, Guest [47] suggested performing a thickness-
ependent projection of the density field to prevent the occur-
ence of structures smaller than the prescribed minimal thick-
ess. In our model, the thickness of a structure is determined
y the period variables tx(r), ty(r), tz(r) and the thickness vari-
ble C(r) while C(r) intuitively controls the thickness of the
odel as illustrated in Fig. 3. According to the homogenization
ethod [14], we know that the stiffness of a periodic structure

s scale-invariant in a unit volume. The effect of period vari-
bles is similar to scale transformation which also influences
he thickness of the geometry. Fig. 8 shows that the minimal
hickness varies with the variables C(r) and tz(r) almost linearly.
herefore we impose linear constraints (13) and (14) for the
ariables tx(r), ty(r), tz(r) and C(r). The choice of the parameter
ounds t , t and C , C will be discussed in Section 5.3.1.
min max min max

6

Fig. 8. Influence of the variables tz (r) and C(r) on the minimal thickness of
PMS-based porous structures. The model is the same as that shown in Fig. 3.

.3. Reformulation

To compute the optimization problem (P), we should change
he variables tx(r), ty(r), tz(r) and C(r) into discrete forms by
sing the technique in Section 3.3. Then the discrete optimization
roblem takes the form:

(Q) : min
tx(ri),ty(ri),tz (ri),C(ri)

I = UTF (26)

.t. V (tx(ri), ty(ri), tz(ri), C(ri)) ≤ V0, (27)

Ãg =

N∑
k=1

w̃(r∗k)g

(
nφz(r∗k)nφ(r∗k)
 cosα0

)
≤ 1+ ϵ, (28)

KU = F, (29)

tmin ≤ tx(ri), ty(ri), tz(ri) ≤ tmax, (30)

Cmin ≤ C(ri) ≤ Cmax, (31)

here {ri}ni=1 are a set of collocation points that are evenly ar-
anged in space. The numerical method to solve the optimization
roblem (Q) will be discussed in the next subsection.

.4. Numerical implementation

The optimization problem (Q) can be solved by the Method of
oving Asymptotes (MMA) [54] which is widely used in topology
ptimization. MMA is an iterative approach to solve a general op-
imization problem. In each iteration step, an explicit subproblem
s generated to approximate the original problem, and then the
ubproblem is solved by the primal–dual interior point method.
he iteration process terminates until the termination conditions
re satisfied.
To apply MMA to the optimization problem (Q), we need to

arry out finite element analysis of elasticity, i.e., to solve the
tatic equilibrium Eq. (29) to update the variables in each itera-
ion step. It involves computing the stiffness matrix K and solving
large and sparse linear system of equations KU = F, which is
uite time-consuming. In the following, we present strategies to
olve the linear system more efficiently.

omputing stiffness matrix K. To start the finite element anal-
sis, we first generate a conservative voxelized model from the
iven model ΩM . This voxelized model can avoid remeshing
n every iteration. We apply the super element strategy [55]
y dividing the regular hexahedra elements (super elements)
nto smaller hexahedral elements (background elements) to im-
rove the accuracy of FEM computation. The stiffness matrix
s assembled on the background elements while the FEM com-
utation is performed on the super element. As demonstrated
n [55], the super element strategy provides better performance
nd convergence rates than traditional FEM calculations at the
ame resolution with background elements. To validate the ef-
ectiveness of our approach, we tested it on a cube model with



N. Zheng, X. Zhai and F. Chen Computer-Aided Design 161 (2023) 103542

5
b
o

w
b
b
D
s
t
Y
e
e

u

E

w
ī
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0 × 50 × 50 (43) elements (divide each super element into 43

ackground elements.), as well as on models with resolutions
f 200 × 200 × 200 elements. The results showed that this

approach achieved a significant reduction in computation time,
with runtimes of 10 s and 3560 s, respectively.

The stiffness matrix of super element ī can be calculated as:

Kī =

∫
Ωī

BTDīBdV =
nb∑
j̄=1

∫
Ωī̄j

BTDīBdV

≈

nb∑
j̄=1

Eī̄jB
T
ī̄jD0Bī̄jvī̄j =

nb∑
j̄=1

Eī̄jK
0
ī̄j

(32)

here Ωī denotes the īth super element, Ωī̄j denotes the j̄th
ackground element in the īth super element, nb is the number of
ackground elements in a super element, B is the strain matrix,
ī is the elastic matrix of Ωī, D0 is the elastic matrix of the
olid material, vī̄j is the volume of Ωī̄j and K0

ī̄j
= BT

ī̄j
D0Bī̄jvī̄j is

he approximate integral of BTDīB over Ωī̄j, In addition, Eī̄j is the
oung’s modulus of the j̄th background element in the īth super
lement. In all the results presented in this paper, each super
lement is divided into 43 background elements.
The SIMP scheme [15] is adopted to model the Young’s mod-

lus Eī̄j:

ī̄j = Emin + ρ̃
p
ī̄j
(E0 − Emin), (33)

here ρ̃ī̄j is the density of the j̄th background element in the
th super element, E0 is the Young’s modulus of solid elements,
min (= 10−6) avoids calculation singularity, and p (= 3) is the
enalization power. Based on our experiments, we observe that
he optimized structures have similar physical properties in terms
f compliance and self-supporting ratio. Furthermore, optimized
tructures using different penalty factors (3, 4, 5) show compara-
le results.
Note that K0

ī̄j
is the same for different super elements, so we

nly need to compute it once in one super element and store
hem as a template K0. In each iteration, we just compute Eī̄j
ccording to (33) to update Kī.

cceleration. Iterative methods such as Gauss–Seidel relaxation
an be used to solve the linear system of (29) in principle. How-
ver, the convergence of such methods is generally slow, espe-
ially under high resolutions. Here we propose to employ the
ultigrid method [56] to accelerate the computation. But linear
lasticity multigrid solvers for large problems are memory bound,
eaning that they operate close to the theoretical memory band-
idth and further performance increases are difficult to achieve.
o address this limitation, Dick et al. [57] proposed a GPU multi-
rid implementation which exploits the fast memory interface on
uch architectures. We adopt this multigrid technique based on
PU in our implementation. It has a parallelization scheme and
atrix-free data structure, and significant performance improve-
ents were reported compared to a CPU implementation. We
ave tested the effectiveness of the multigrid method in solving
set of finite element equations with a scale of 503. It appears

hat there is a significant reduction in the time required for each
teration, with the time decreasing from 1633 s to just a few
econds.
Our optimization process, which involves finite element anal-

sis, sensitivity analysis, and MMA, is implemented on the GPU
sing the CUDA parallel programming API. Based on our ex-
erimental tests, GPU computing reduced the runtime by ap-
roximately 90% and the memory consumption by around 80%
ompared with CPU computing.
7

Volume discretization. In order to solve the optimization prob-
lem (Q), the volume in the constraint (27) should be calculated.
This can be done by discretizing the volume as:

1
8

Nb∑
j=1

8∑
l=1

ρ̃
j
lvb, (34)

here ρ̃
j
l is the density at lth node point of the jth background

lement and is computed according to the Eqs. (15)–(17), and Nb
s the total number of background elements.

wo-stage optimization. To expedite the optimization process
or the problem (Q) while using MMA, which typically exhibits
low convergence and longer optimization time, we divide it
nto two stages: period optimization and thickness optimization.
uring the period optimization stage, we keep the variables C(ri)
ixed and treat tx(ri), ty(ri), and tz(ri) as optimization variables.
onversely, during the thickness optimization stage, we fix tx(ri),
y(ri), and tz(ri) and treat C(ri) as the optimization variables. This
pproach helps to achieve faster convergence and reduces the
verall optimization time by half.
The input of our system is a model ΩM represented by a

urface mesh. The system first computes a voxelized model. Then
he voxel model is optimized with two-stage optimization. The
ermination criteria for each optimization stage is expressed as:
∥I − Iavg |

Iavg
≤ 1× 10−3,

∥V − V avg
∥

V avg ≤ 1× 10−3,

∥Ãg − Ãavg
g ∥

Ãavg
g

≤ 1× 10−3,

(35)

here I , V and Ãg are the compliance, the volume fraction and the
unction defined in (22) in the current iteration, respectively. Iavg ,
avg and Ãavg

g are the average values of I , V and Ãg in the last ten
terations, respectively. Once the constraints have been satisfied
nd the two-stage optimization has converged, the final structure
s generated.

.5. Sensitivity analysis

In this subsection, we perform a sensitivity analysis of the
bjective function and the constraints with respect to the design
ariables.

eriod optimization. In this process, we fix the thickness vari-
bles {Ci}

n
i=1 and calculate the sensitivity analysis with respect to

he period variables {txi}ni=1, {tyi}
n
i=1 and {tzi}ni=1.

∂ I
∂txi
= −UT ∂K

∂txi
U

= −

Ns∑
ī=1

UT
ī

⎛⎝1
8

nb∑
j̄=1

⎛⎝ 8∑
l=1

∂Hξ

(
ρ
ī̄j
l

)
∂txi

⎞⎠K0

⎞⎠Uī,

∂V
∂txi
=

1
8

Nb∑
j=1

8∑
l=1

∂Hξ

(
ρ
j
l

)
∂txi

vj,

∂Ãg

∂txi
=

N∑
k=1

w̃(r∗k)g
′

(
nφz(r∗k)nφ(r∗k)
 cosα0

)
⎛⎝ ∂nφz (r∗k )

∂txi
∥nφ(r∗k)∥ − nφz(r∗k)

∂∥nφ (r∗k )∥
∂txi

∥nφ(r∗k)∥2 cosα0

⎞⎠ ,

(36)

here Ns and Nb are the total numbers of super elements and
background elements in the model, respectively, n is the number
b
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f background elements in a super element, and ρ
ī̄j
l represents

density at the lth node point of the j̄th background element in
he īth super element. ρ

j
l is density of the lth node point of the

th background element in the model and vj is the volume of jth
ackground element in the whole model. The sensitivity analysis
ith respect to {tyi}ni=1 and {tzi}ni=1 can be computed in a similar

way.
The derivatives of Hξ , nφz(r∗k) and ∥n⃗φ(r∗k)∥ are computed by

applying the chain rule, i.e.,

∂Hξ

(
ρ
ī̄j
l

)
∂txi

=

∂Hξ

(
ρ
ī̄j
l

)
∂ρ

ī̄j
l

∂ρ
ī̄j
l

∂tx

∂tx
∂txi

,

∂nφz(r∗k)
∂txi

=
∂nφz(r∗k)

∂tx

∂tx
∂txi

,

∂∥nφ(r∗k)∥
∂txi

=
nφ(r∗k)
∥nφ(r∗k)∥

· (
∂nφx(r∗k)

∂txi
,
∂nφy(r∗k)

∂txi
,
∂nφz(r∗k)

∂txi
),

(37)

here tx can be computed according to Eqs. (7) and (8).

hickness optimization. In this process, we fix the period vari-
bles and optimize the thickness variables {Ci}

n
i=1. The sensitivity

nalysis is calculated as:

∂ I
∂Ci
= −UT ∂K

∂Ci
U

= −

Ns∑
ī=1

UT
ī

⎛⎝1
8

nb∑
j̄=1

⎛⎝ 8∑
l=1

∂Hξ

(
ρ
ī̄j
l

)
∂Ci

⎞⎠K0

⎞⎠Uī,

∂V
∂Ci
=

1
8

Nb∑
j=1

8∑
l=1

∂Hξ

(
ρ
j
l

)
∂Ci

vj,

∂Ãg

∂Ci
=

M∑
k=1

w̃(r∗k)g
′

(
nφz(r∗k)nφ(r∗k)
 cosα0

)
⎛⎝ ∂nφz (r∗k )

∂Ci
∥nφ(r∗k)∥ − nφz(r∗k)

∂∥nφ (r∗k )∥
∂Ci

∥nφ(r∗k)∥2 cosα0

⎞⎠ .

(38)

. Results and discussion

This section demonstrates the performance of our proposed
tructure optimization algorithm for different models. P surfaces
re adopted as the TPMS representation in the porous structure
ptimization. The algorithm is implemented in C++ and runs on a
C with 3.20 GHz Intel(R) Core(TM) i7-8700 and 64 GB memory.

.1. Pipeline

For a given model, we first generate a bounding box to enclose
he input model and scale the bounding box such that the length
f the longest edge of the bounding box is 1. The size of the
ounding box will affect the selection of period parameters. In
act, if the bounding box is scaled by a factor κ , then the period
arameters will be scaled by 1/κ . After the bounding box is
alculated, the system computes a voxelized model which is opti-
ized with the two-stage optimization process introduced in the
revious section. Once the constraints are satisfied and the two-
tage optimization has converged, the final structure is generated.
he overall optimization algorithm is described in Algorithm 1.
ig. 9 shows sliced views of a model and the physical properties
compliance, volume fraction and self-supporting ratio) along

ith the period and thickness optimization processes.

8

Algorithm 1 Fabrication friendly TPMS-based porous structure
optimization
Input: A model ΩM , forces F , fixed area Γu
Output: Period and thickness parameters
1: Generate a conservative voxelized domain from ΩM
2: Generate a set of collocation points
3: Initialize {txi}ni=1, {tyi}

n
i=1, {tzi}

n
i=1, {Ci}

n
i=1 at the collocation

points
4: h← 1
5: while h < max_iter && !converged do
6: Update the combinatorial coefficients in (7)
7: Generate a set of surface points {r∗

k̄
}
M
k̄=1

by the marching
cube method

8: Solve the linear system KU = F by the multigrid method
to obtain U

9: Compute I , V , Ãg and perform sensitivity analysis ∂ I
∂txi

, ∂V
∂txi

,
∂Ãg
∂txi

, ∂ I
∂tyi

, ∂V
∂tyi

, ∂Ãg
∂tyi

, ∂ I
∂tzi

, ∂V
∂tzi

, ∂Ãg
∂tzi

10: Update period variables {txi}ni=1, {tyi}
n
i=1, {tzi}

n
i=1 by MMA

11: h← h+ 1
12: converged← check_converge_condition()
13: end while
14: h← 1
15: while h < max_iter && !converged do
16: Update the combinatorial coefficients in (7)
17: Generate a set of surface points {r∗

k̄
}
M
k̄=1

by the marching
cube method

18: Solve the linear system KU = F by the multigrid method
to obtain U

19: Compute I , V , Ãg and perform sensitivity analysis ∂ I
∂Ci

, ∂V
∂Ci

,
∂Ãg
∂Ci

20: Update the thickness variables {Ci}
n
i=1 by MMA

21: h← h+ 1
22: converged← chech_converge_condition()
3: end while

5.2. Performance

We choose four models–bunny, duck, kitten and molar as
illustrated in Fig. 10(a) (the red arrows represent external forces
imposed on the models) to test the performance of our structure
optimization algorithm, and comparison results with two other
models are also provided.

In order to show the effectiveness of our algorithm, we com-
pare the results by our method with the results by two other
models. One is the optimization model (Q) without the overhang
constraint (28), which is similar to the model proposed in [32].
The other is the initial model we set for solving the problem (Q).
We generate the initial model from the model with the same
period variables tx = ty = tz = 4, and then stretch the model in z
direction by setting tz ∈ [1, 1.4] in order to satisfy self-supporting
constraints as much as possible. Finally, we adjust the thickness
variable C such that the volume constraint is satisfied. Fig. 10(b)
shows the initial models generated by the above settings.

We compare the results by the following quantities: compli-
ance, volume fraction, self-supporting ratio and computational
time for four different models. All the models are tested with
three different volume fractions 35%, 50% and 65%. The statistics
are summarized in Fig. 11. From the picture we can observe
that our algorithm effectively reduces the compliance of the
initial models, which means the optimized structures have better
stiffness than the initial models. As for the comparison with the

traditional topology optimization with only the volume constraint
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Fig. 9. Physical properties (compliance, volume fraction and self-supporting ratio) of the molar model during the optimization process. Blue, green and red curves
represent compliance, volume fraction and self-supporting ratio respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 10. Optimization of TPMS-based porous structures. (a) Input models with boundary conditions and external forces. (b)(d)(f) The structures of the initial model,
the model without the overhang constraint and our model, respectively. (c)(e)(g) are the corresponding section views of (b)(d)(f). The overhang regions are colored
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(e.g., the method in [32]), there is not much difference between
the compliance. However, our method improves the average self-
supporting ratio from 85% to 96%, which means that our models
are more suitable for 3D printing. Furthermore, our method can
also improve the printing accuracy, because 3D printers may
9

change the structure a little bit when they encounter some un-
printable areas. Figs. 10(d) and 10(f) show the results generated
by the two methods respectively.

The computational performance of our algorithm is summa-
rized in Table 1, where the second column lists the number of
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Fig. 11. Comparison results of porous structures for different volume fractions.
Table 1
Computational performance of two methods for different models.
Model #Elements Method #Iter.

(Period)
#Iter.
(Thickness)

Time[min/iter]
(Period)

Time[min/iter]
(Thickness)

Total[min]

Ours 54 26 1.93 1.52 143.74Bunny 6.24× 106
Without overhang constraint 58 33 1.67 1.29 139.43

Ours 49 47 2.04 1.65 177.51Duck 5.91× 106
Without overhang constraint 55 45 1.70 1.33 153.35

Ours 56 41 1.88 1.47 165.55Kitten 3.17× 106
Without overhang constraint 44 46 1.56 1.21 124.30

Ours 62 64 1.61 1.23 178.54Molar 2.41× 106
Without overhang constraint 65 70 1.27 0.98 151.15
elements used in the finite element simulation, the four column
shows the number of iterations in the two-stage optimization,
and the last column is the total computational time. As we can see
from the table, our porous structure optimization algorithm costs
a little more overhead than the optimization without the self-
supporting constraint. Yet our algorithm improves the supporting
ratio by ten percent. On the other hand, the computational cost of
our algorithm depends largely on the number of finite elements
used in the analysis, and for models discretized into millions of
elements, the computational time is less than three hours.

5.3. Discussion

In this section, we discuss the initialization and bound selec-
ion of the design variables. The choice of the parameter in the
mall area filtering function is also discussed.

.3.1. Design variables
eriod and thickness variables initialization. For different choice
f the period and thickness variables, the resulting TPMS-based
orous structures are quite different, as illustrated in the previ-

us picture– Fig. 3. Fig. 13 further depicts how the compliance

10
and the volume fraction of the initial model depend on the
change of the design variables. From the pictures we can see that,
while the volume fraction is proportional to the design variables,
the compliance monotonically decreases as the design variables
increase.

According to our experiment, for a fixed volume fraction, the
compliances and self-supporting ratios of the optimized struc-
tures have little difference for different initializations of the de-
sign variables. However, the optimized structures vary with dif-
ferent initializations. Generally, the larger the initial period vari-
ables, the more complex the internal structure of the optimized
model, as shown in the middle column (with a volume fraction
of 50%) and the right column (with a volume fraction of 65%) in
Fig. 12. Table 2 gives the corresponding numerical results of com-
pliances and self-supporting ratios of the optimized structures.
As we can observe, for a fixed volume fraction, the compliance
and the self-supporting ratios of the optimized structures have
little difference under different initializations of design variables.
However, compliance depends mainly on volume fractions.

In [32], Hu et al. concluded that the minimal thickness of
a TPMS is inversely proportional to the period variables and
directly proportional to the thickness variable, and they gave an
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Fig. 12. Comparison of different period and thickness variable initializations.
The left column shows the initial models, the middle and right columns are the
corresponding optimized structures by our algorithm with a volume fraction 50%
and 65% respectively.

Table 2
Statistic results of optimized porous structures for different initializations.
Initialization
(tx, ty, tz , C)

Volume Compliance Self-supporting
ratio

50% 179.49 95.8%Top(2, 2, 1, 0.5) 65% 90.33 95.9%

50% 180.11 96.1%Middle(4, 4, 1, 0.5) 65% 89.80 96.2%

50% 181.01 95.9%Bottom(4, 4, 2, 0.5) 65% 90.76 95.7%

estimation of the minimal thickness for the worst case:

ωmin ≈
0.1838C(r∗)

t(r∗)
, (39)

where ωmin (= 0.02 in our setting) is the minimal thickness at the
location r∗. Based on this formula, we can set the initial period
variable t0 and the thickness variable C0 to satisfy the constraint:

ωmin =
0.1838C0

t0
. (40)

On the other hand, we can employ the relationship between
he design variables and the compliance and volume fraction
f the initial model (as illustrated in Fig. 13) to estimate upper
ounds for t0 and C0. Then we combine the formula (40) to set t0
nd C0 such that they are as large as possible in order to minimize
he compliance.

eriod and thickness variables bound setting. In the optimiza-
ion problem (Q), the bounds tmin, tmax, Cmin, Cmax of the period
nd thickness variables have influence on the final results. First,
he thickness variable C(r) influences the minimal thickness and
alid representation of the porous structure. Too small Cmin would
esult in a too thin structure which is unprintable. On the other
and, too large Cmax would result in a too thick structure which
ay have local and global self-intersections. According to our
xperiments, a reasonable choice is Cmin = 0.05 and Cmax =

.8 for P surfaces. Next, we consider the bounds of the period
11
Fig. 13. Influence of the period variables and thickness variables on the volume
fraction and compliance of the initial porous structure.

variables tx(r), ty(r) and tz(r). Generally too small period would
esult in void solids and too large period would produce too
omplex structure. According to our experiment, we set tmin =

.28. For the maximal period, we set it according to the following
elation based on the formula (39):

min ≤
0.1838Cmax

tmax
, (41)

and thus we set tmax = 0.1838Cmax/ωmin.

5.3.2. Small area filtering function
For an overhang region whose area is less than some tolerance

Atol (Atol is set to be 16 mm× 16 mm in our implementation), we
do not have to add any supporting material in 3D printing, that
is, the region is considered as self-supporting. For the overhang
regions whose areas are larger than Atol, an overhang constraint
must be imposed. For that purpose, a small area filtering function
w(r∗k) defined in (24) is constructed. The weight function w(r∗k)
has a relatively large value at overhang regions and a relatively
small value at non-overhang regions.

To actually compute the function, we first generate a set
of surface points of a porous structure by the marching cube
method and label the overhang points. Then we compute the
k-neighborhood points of every overhang point r∗k to get the over-
hang ratio s(r∗k) at this point. The radius δ of the neighborhood ball
is set to be 0.01 in our experiment. Finally the overhang function
can be computed according to (24).

In the formula (24) of the small area filtering function w(r∗k),
the parameter η is selected according to the threshold Atol. Fig. 14
shows the effect of the parameter η on the overhang regions
for the same model. We find that η = 0.3 gives a better self-
supporting result according to our numerical experiment. Fig. 14
depicts the over-hang regions of the Kitten model for different
parameter values of η.

5.4. Comparisons

Implementation details. Many previous works have considered
overhang constraints in topology optimization for additive man-
ufacturing such as [39,40,42]. We compare it with the represen-
tative work of Qian [39] in three aspects. Firstly, Qian et al. [39]
took element density as design variables and density gradients
to approximate boundary normals, while we used TPMS-based
geometry by optimizing the period and thickness parameters.
This allows us to generate complex and smooth geometries with
high self-supporting ratios, and establish a correlation between
print size and the thickness parameter in TPMS for better print
quality. Secondly, we utilize acceleration techniques such as a
super element strategy, a multigrid solver, and GPU computing
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Fig. 14. Parameter setting in the small area filtering function. The top row is
he optimized TPMS-based porous structures. The models in the middle row
how the removable overhang regions and the actual overhang regions colored
n green and orange, respectively. The bottom row shows the final overhang
egions in the models. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

ia the CUDA parallel programming API to handle millions of
lements and achieve high-performance computing. This enables
s to handle large-scale problems and obtain efficient solutions.
inally, our TPMS-based geometry generates smooth and con-
ected porous structures instead of sharp features, which can
ccur in Qian [39]. This is essential for practical applications
here smooth and connected geometries are preferred.

on mises stress. There are numerous previous studies on opti-
izing infill structures using various methods, including support-

ree lattices [13,43], gyroids [31], and spheroids [44]. We have
onducted a comparison of Von Mises stress, as shown in Fig. 15.
he structures used for the comparison include honeycomb struc-
ures [58], uniform support-free infill structures [43], non-
niform support-free infill structures [13], as well as uniform
PMS-based support-free infill structures. The stress distribution
nalysis reveals that our model bears less stress under two
olume fraction settings, and the maximum stress is the lowest
mong all the structures.

ompression tests. We conducted physical experiments to val-
date our results by fabricating the optimized structures using a
ambu X1-Carbon Combo 3D printer and subjecting it to com-
ression testing. The models are printed using PLA, and we con-
uct compression testing on three sets of models: a kitten model,
duck model, and a bunny model with heights of 12 cm, 8 cm,
nd 8 cm, respectively. The MTS809 Axial/Torsional Test System
s used to evaluate the strength of the printed models, as depicted
n Fig. 16(a). The crosshead is moved at a constant speed of
mm/min, generating a consistent compressive force. The results
hown in Fig. 16(b) demonstrate that our optimized structures
an withstand significantly more force compared to the uniform
upport-free TPMS infill model used as the initialization.
12
Fig. 15. Comparisons of Von Mises stress of different structures.

Fig. 16. Compression tests using MTS809 Axial/Torsional Test System.
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Fig. 17. The displacement–load curves of the physical tests for different methods
of 40.6% volume fraction.

Fig. 18. The displacement–load curves of the physical tests for different methods
of 54.5% volume fraction.

Furthermore, we have conducted compression tests on our
structures and others shown in Fig. 15. The tests are conducted
under two volume fraction settings, and the statistical results are
plotted in Figs. 17 and 18. The results in Fig. 17 demonstrate that
our optimized structure can withstand higher force compared to
honeycomb structure models, while the honeycomb model does
not take overhang constraints into consideration. Our optimized
model with a 54.5% volume fraction can withstand nearly 10kN of
force, with significantly better stiffness than models generated by
other methods, as shown in Fig. 18. The detailed structures after
compression tests are shown in Fig. 19.

Fabrication quality. To compare the printing results of our
method with and without the self-supporting constraint, we print
four optimized models shown in Fig. 10 with two methods (ours
shown on the left vs structures optimized without overhang con-
straint shown on the right). The results are illustrated in Fig. 20.
We can observe that the models printed by our method are in
good condition, while the models printed by the other method
have many artifacts such as collapsed and stringy structures due
to the lack of supporting material in the overhang regions.

5.5. Limitations

The proposed TPMS-based porous structure optimization algo-

rithm has several limitations. Firstly, although it greatly

13
reduces the overhang regions, it cannot generate completely self-
supporting porous structures. This may be due to the limited
representation ability of TPMS. Secondly, while our algorithm
avoids the remeshing procedure in every iteration compared to
traditional FEM-based computation, the computational accuracy
depends on the sizes of the background elements used to cal-
culate the integrals in the analysis. Large background elements
may reduce the efficiency of solutions. This is a common problem
in all FEM-based methods. Thirdly, there is significant room for
improvement in the efficiency of the current algorithm. In fact,
the algorithm spends most of the time in the sensitivity analysis,
where the derivative calculation is computationally expensive, as
shown in the formulas (36) and (38).

6. Conclusion

In this paper, we propose an algorithm to optimize porous
structures with self-supporting constraints based on TPMS rep-
resentations. The optimized structure has a function represen-
tation and inherits several good properties of TPMS, including
high smoothness, full connectivity, good controllability, high
surface-to-volume ratio, and good mechanical properties. It is
also print-friendly in additive manufacturing since it generates
less overhang regions and guarantees minimal thickness. Exper-
imental results demonstrate the effectiveness of the proposed
method.

Our framework utilizes period and thickness variables in
TPMS-based representations to construct the geometry, rather
than using traditional topology optimization with density vari-
ables. Additionally, we avoid the computationally expensive
remeshing procedure during analysis, which is necessary in many
other topology optimization methods. We achieve significant
computational acceleration by employing a super element strat-
egy, a multigrid solver, and GPU computing via the CUDA parallel
programming API to handle millions of elements and achieve
high-performance computing.

However, there are still several research directions that could
improve our algorithm. Firstly, to obtain fully self-supporting
structures, new representations should be explored. Secondly, the
analysis step is still computationally expensive, and new strate-
gies such as fast assembly of the stiffness matrix and efficient
computation in sensitivity analysis could be explored. Finally,
optimizing the tradeoff between efficiency and accuracy could
also be discussed.
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Fig. 19. Comparison of the detailed structures of several methods after compression tests.
Fig. 20. Comparison of printing results. The models on the left of each sub-figure are printed using our method and the models on the right are printed using the
method without overhang constraint.
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