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ABSTRACT

A challenging topic arising in dynamic wind turbine wake is modeling, especially the low-order
approximation. The central problem is the fact that it has high-dimensional and nonlinear wake char-
acteristics. In this paper, a Koopman-linear flow estimator is designed according to the Koopman
operator theory. Different from the conventional flow reconstruction with the linear stochastic estima-
tion method, a dynamic state-space model with physical states is constructed. The wake dynamics are
approximated using a limited number of measurable physical parameters by the dynamic part; then, the
full wake flow is reconstructed from the low-order states by the estimation part. The flow estimator is
designed into three different forms following Extended Dynamic Mode Decomposition (EDMD) method.
Each form has its unique advantages. Precisely, probe sensors are placed in the studied space and provide
direct information of the wake, and a few in-directly physical parameters are also included. Nonlinear
integer programming is further adopted using a heuristic optimization algorithm, by which the sensor
configurations are optimized. Comparisons with the standard Dynamic Mode Decomposition (DMD)-
based wake model are adopted in time domain and frequency domain to verify the effectiveness of the
proposed flow estimators. The results show acceptable accuracy in typical modeling cases and maintain
good estimation accuracy when the measurement noises are involved. Finally, the proposed Koopman-
linear flow estimator is compared with related stochastic estimation methods, in which the connections
of the proposed estimator with stochastic ones are also discussed.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

modeling fidelity [7]. However, the computation cost of the NS-
equation-based wake model is huge. Therefore, it is usually regar-

As interests towards wind farm research grow, there has been an
increasing focus on wake effects on wind farm power capture or
structural loads [1]. The steady-state wake model, like FLORIS [2]
and Gaussian-based model [3,4], was proposed and considered
during wind farm design and operations to achieve better power
utilization and conversion [5]. In its continuation, the dynamic
characteristics of wind turbine wake are gradually becoming the
focus of current research [6]. The dynamic wind is usually modeled
by the Navier-Stokes equations (NS-equations), which characterize
the fluids dynamics from the mechanism level and reach high
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ded as a simulation tool rather than a modeling technics [8]. The
dynamic wake model herein is expected to characterize the wake's
dynamic behavior while still retaining low computational re-
quirements. In this area, several models are introduced from
different aspects. Typical examples are steady-state wake model-
based FLORIDyn model [9], Dynamic Wake Meandering (DWM)
model [10], and reduced-order model (ROM) [11]. Among these
reviewed dynamic wake models, the data-driven linear reduced-
order model is the primary consideration in this paper.

Proper Orthogonal Decomposition (POD) and Dynamic Mode
Decomposition (DMD) methods are usually adopted to construct
the dynamic wake ROMs. In Ref. [12], the wind turbine wake is
decomposed using finite numbers of POD modes and then
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reconstructed with good reconstruction accuracy. Furthermore, in
Ref. [13], a reduced-order wake model is proposed using POD. After
the dominant POD modes are identified, a dynamic model is ach-
ieved through a polynomial expansion of the POD coefficient per-
mutations. Though a reduced-order model could be constructed
using POD, the establishment of dynamic models to describe fluid
dynamics is more like the focus of DMD than POD [14]. A DMD-
derived dynamic wake ROM is introduced in Ref. [11] and several
typical DMD modes are visualized. Using a few stable DMD modes,
the DMD-derived ROM linearly approximates the wake dynamics
and predicts the wake flow in the upcoming time. Usually, the
states in POD/DMD-derived wake model are calculated from the
original measurement that an order-reducing linear matrix maps
the measured state to a low-dimensional subspace [11]. After pre-
diction, an order-ascending mapping reconstruct the full-wake
flow from the reduced-order states. The POD/DMD-derived wake
ROMs have inspired us for a new question: is it possible that the
wind turbine wake can be estimated and predicted through a linear
model with physical states? The states are expected to be
measurable-physical parameters in the wake flow, which benefits
for industrial applications and further improvements like the Kal-
man filter. Based on the measured physical states, the wind turbine
wake can be reconstructed and predicted.

In the physical measurement-based flow reconstruction field,
achievements have been accomplished. In 1988, the Linear Sto-
chastic Estimation (LSE) method was first introduced in Ref. [ 15], in
which velocity and the deformation tensor of conditional
homogeneous-shear flow are approximated by two-point spatial-
correlation tensor using linear mean-square stochastic estimation.
In this work, the LSE method is first proposed to approximate the
conditional eddies with given local kinematics, and then further
applied under different events to show good estimation results.
Like the mapping from reduced-order states to full-flow field in
DMD, LSE constructs a pre-trained linear mapping from the direct-
measured flow-related information to the full-flow field. Further-
more, in Ref. [16], the flow around the airfoil is also studied using
LSE: sensors are placed on or around the airfoil to provide direct-
measured information as probes, and LSE reconstructs the steady
flow based on the probes-measured data. The main advantages of
LSE method are that: the reconstruction is based on physical
measurements. The to-be-reconstructed state space is assumed to
have a linear relationship with the measurement space, and LSE
calculates a linear approximation of the unknown linear relation-
ship. However, the LSE-based flow reconstruction is hardly regar-
ded as a model since the fluid dynamics are not considered. The
dynamic wake ROMs are expected to capture the flow field dy-
namic performance, at least part of the dynamics.

Although the reviewed methods achieve good accuracy and
have been widely used, whether a linear approximation model may
carry advantages of both LSE and DMD-derived models has rarely
been examined directly. A desired dynamic wake ROM is expected
to model the wake dynamics while remaining measurable-physical
states. This paper introduces a flow estimator following the
Koopman operator theory and Extended Dynamic Mode Decom-
position (EDMD) method [17]. Koopman operator theory is an
alternative formalism for dynamical system theory that provides a
linear operator to characterize nonlinear and high-dimensional
systems. It has been applied in the flow modeling and control
area recently [18]. DMD and EDMD solve finite-dimensional ap-
proximations of the infinite-dimensional Koopman operator [19].
In this way, the nonlinear dynamics can be easily analyzed and may
be controlled [20,35]. The Koopman operator and EDMD method
allow a scalable reconstruction of the underlying dynamical system
from measurement data while remaining in linear form. Such
property is partly used in Ref. [21] to help design the MPC

Energy 238 (2022) 121723

controller, which is their main consideration, but the reconstruc-
tion using Koopman operator theory has not been fully verified.

This paper orients to fill the gap between DMD and LSE while
broadening the Koopman operator theory-based flow reconstruc-
tion in Ref. [21]. The flow estimator is designed to linearly
approximate the wind turbine wake dynamics using physical and
measurable states while reconstructing the full wake flow. A total of
three forms of flow estimators are designed, in which all states are
physical. Each form has unique advantages. Furthermore, to opti-
mize the reconstruction accuracy of developed estimator, sensor
configuration optimization is also carried out using a heuristic al-
gorithm. Finally, the flow estimator is analyzed for both time- and
frequency-domain characteristics and compared with DMD and
LSE-related methods to verify the effectiveness.

The rest of this paper is organized as follows. In Section 2, the
Koopman operator theory and EDMD procedure are briefly intro-
duced, then the flow estimator is designed into three different
forms following the reviewed approaches. The studied wind tur-
bine wake data is acquired using large eddy simulation, which is
presented in Section 3. The probe sensors are placed in the wake
zone using an nonlinear integer-programming method, which is
also introduced. Three form flow estimators are compared with the
DMD-derived wake model in both time and frequency domain in
Section 4. In Section 5, the prediction ability of the proposed flow
estimator is verified, as well as the sensors-based consistency.
Section 6 discusses the flow estimator with LSE-related methods
through series comparisons. Section 7 concludes this paper.

2. The flow estimator

In this section, the theoretical basis is briefly introduced. The
flow estimator is designed. Three different forms are introduced,
and each form will be introduced in an independent subsection.

2.1. Theoretical basis

For a nonlinear dynamic system, the Koopman operator is a
linear infinite-dimensional transformation defined for the system
observable, fully capturing all the underlying system properties. It
theoretically guarantees the feasibility of linear approximation to
nonlinear systems. The Koopman operator is first defined for un-
controlled systems and then generalized to controlled systems.
Detailed theoretical proof are referred to Refs. [17,18,22]. In practice,
the DMD method is used to solve a finite-dimensional approxi-
mation to the Koopman modes, i.e., the DMD modes. In fluid
modeling, the standard DMD method provides a practical solution
to approximate the high-dimensional fluid dynamics using lower-
order state-space models. The DMD-derived model requires a full
measurement of the fluid. The connections between DMD and the
Koopman operator are referred to Refs. [23,24].

Although DMD has been widely used in the flow field, it is still
limited under fairly restrictive conditions: direct measurement of
the flow field is required. As an improved method, EDMD broadens
the extensiveness of DMD that different observables are included. It
is introduced by Williams in Ref. [19], which shows an alternative
way to approximates the Koopman operator using a collection of
observables. In this way, the Koopman operator K could be
approximated with direct measurement of the full system and
observables, such as polynomials, radial basis functions, or spectral
elements. Both DMD and EDMD are finite-dimensional approxi-
mation methods to the infinite-dimensional Koopman operator.
The DMD procedure may be viewed as a spectral collection method
of approximating K. In contrast, the EDMD approximated K is
defined on a subspace spanned by a collection of observables with
wider extensiveness. The EDMD procedure can be referred to
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Refs. [18,21]. The EDMD method is a comprehensive solution to K
than the DMD method, which could be viewed as a particular case
of EDMD. The feasibility of both DMD and EDMD are guaranteed by
the Koopman operator theory, which proves the nonlinear dy-
namics can be linearly approximated, see Ref. [25]. Detailed
Koopman Operator theory, DMD, and EDMD procedures are given
in the Appendix section. Connections between the Koopman
operator and EDMD are analyzed in Refs. [17,22].

The Koopman operator theory, DMD, and EDMD methods pro-
vide a solid theoretical foundation for the desired flow estimator.
Firstly, The designed flow estimator is not an exact Koopman
operator. It could be regarded as a Koopman-like or Koopman
operator-based finite-dimensional linear system, which approxi-
mates the dynamic flow using physically measured states and then
reconstructed the full flow. The Koopman operator theory proves
the feasibility, while the design procedure follows the EDMD
method. Furthermore, as a linear estimator, the flow estimator's
basic function is that the full-wake flow is estimated from low-order
physical states. Thus it is referred to as a Koopman-linear flow
estimator. The designed flow estimator does not require specific
reconstruction objects; a typical choice could be the velocity or
pressure in common flow studies. This work demonstrates the
velocity field of wind turbine wake. In the following of this paper,
the flow estimator aims to reconstruct the velocity field in a wind
turbine wake region. Considering the measured or simulated flow
data are usually given in girds, the flow here means the gridded
velocity data in a given space, which could be two- or three-
dimensional ones.

2.2. Basic form

In this basic form, several probe measurement sensors are
assumed to exist in the studied space, by which the flow velocity
could be measured at the placed locations. The flow estimator re-
constructs the full flow based on the measured data. The basic form
takes the state-space model as:

zt =Az zeR", (1)
X =Cz xeR™,

in which z is the probes measured states, z" is the time-shifting
states with one time-step in advance, and % is the estimated x,
the studied flow field. The desired state matrix A is with n x n
dimension and the estimation matrix C is with m x n dimension.
Each state represents the measured velocity of one probe. The
state-space model explains the working mechanism of this basic
form flow estimator: similarly as the EDMD flow model in Ref. [22],
the first half in (1) describes a linear approximation of the flow
dynamic using measurable states, while the second half estimates
the full-flow field from states. Thus, the first half could be regarded
as the predictor while the second half is the estimator. Since the
states are physically measured from the flow field, the estimator
matches with the LSE method that the full-flow field is recon-
structed from samplings.

Assuming a total of n cells at k time step are selected from all
measured cells as can-be-obtained measurements. The flow data in
the studied space have m measured cells and are marked as X. The
measured dataset is marked as X, and works as the lifted matrix
similarly as the EDMD procedure in (C.3). Dimensions of datasets
are m x k of X and n x k of X,. Define

Xiife = Xp = g1(x) = select(X, n). (2)

The select(X, n) operator represents a given or random selection
from the dataset X, that n rows data are used as probes. The X
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data is the time-shifting data of the lifted data Xjis, and have one
time-step in advance (2 s in this study). The designed procedure
matches the EDMD method that the selection operation is regarded
as an observable of the studied flow field: a non-uniform random
sampling, which captures some of the linear performance of the
true flow from measured data. Instead of a collected observables
defined in the EDMD procedure (C.2) and (C.3) in Appendix C, the
selection/sampling is one observable and marked as g;(x).
A n-th SVD is performed as:

Xp = UpZpVy, (3)

in which the subscript p is used to identify the SVD result of X;, from
SVD operations to different dataset. Since the SVD operation takes
the same order as the state rank, it is rather a full-order decom-
position than a reducing-order decomposition. U and =, are n x n
and Vp is k x n. The A matrix is calculated following the standard
DMD method, while the C matrix can be obtained by solving the
following linear least-squares problem:

miﬂcHX - Kiie )F- (4)
The corresponding solution is

T -1
A = UPXlJirftVPEp ’ (5)

¢ = Xxirift‘
where 1 indicates the Moore-Penrose pseudoinverse.

As can be seen, the dynamic part takes the standard DMD
method to decompose the dynamic performance based on
measured data. More details are referred to B. The estimation part
in the basic form flow estimator has the same form as the linear
statistic estimation.

2.3. Extended form

As an extended form flow estimator, more observables are
included. Unlike the measured probe data as observable in the basic
form, the added observable is identified as deterministic states.
Usually, in the flow studies, some measurable parameters are also
noticed. Other than the direct flow information like measured data,
deterministic parameters could have different but important
physical meanings. Take the wind turbine wake as an example.
Multi-wind turbines are usually placed nearby and organized as a
wind farm. The wake of the front-row wind turbines affects the
downstream wind turbines, resulting in the loss of downstream
wind speed, an increase in turbulence intensity, and a decrease in
the captured power of the downstream wind turbines. In this case,
the affected parameters like rotor speed or output power of the
downstream wind turbines could be adopted as deterministic
states.

With the extension of deterministic states, the lifted dataset in
the extended form is defined as:

Xlift = [gl (X)7g2(x)] = [Sele‘:t(xa n)aXd]v (6)

in which Xy is the lift of deterministic parameters dataset. The X,
set is also the time-shifting data of Xjs. Set the added dataset Xg4
with p parameters and p x k order, then Xji; and Xﬁft are with
(n + p) x k. Both sampling measurements and deterministic states,
which are flow-related parameters and showing part of the flow
performance in direct or indirect manners, are regarded as ob-
servables and included in states. The state-space model of the
extended form is given as:
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[z.2}] =Alz,z4] zER", z4€RP,

(7)

X =Clz,zg] X€R™,

in which z4 is the added deterministic states. Strictly, the extended
form can take the same state-space model as the basic form. Both
probe measured states and deterministic states are observables to
the flow and could be collected as (6), similarly as the EDMD pro-
cedure in (C.2). But the separate expression is beneficial to a clear
understanding and sustains the further introduced ext-DMD form,
therefore distinguished.

Compared with the linear stochastic estimation, the extended
form introduces the deterministic states and the possibility that
they can involve more observables. After the lifted dataset is ob-
tained, state matrices are calculated following the linear least-
squares solution in (C.6) or the alternative way in (C.7). The esti-
mate matrix C is solved following the same solution (4), and the
state matrix A is solved by:

ming Hxﬁft — AXjife ‘F, (8)
and the result is given as:
A= XlJirftXlTift' (9)

In terms of dimensions, A is with (n + p) x (n + p) and C is with
m x (n + p).

2.4. Ext-DMD form

As introduced in Ref. [26], POD could be used to decompose the
flow before reconstruction. Functionally, POD works as a filter that
the dominant components are reserved, while the measurement
noise and high-frequency nonlinear components are filtered.
Before reconstruction, the POD/SVD also helps to reduce the
computational cost and achieve a reduced-order model. Although
the added deterministic states might share similar physical
meaning as the probe-measured states, e.g., the regionally averaged
velocity, the SVD operation is still introduced herein to ensure the
universality.

Firstly, both the full flow dataset and the probe-measured
dataset are decomposed using a same order of SVD:

X = UxSxVE

* "V’;’ (10)
Xp =UpZpVyp.
Usually, the SVD operation order is less than the flow order in the
introduced DMD-related methods. It dues to the fact that a
reduced-order model is expected. In the designed flow estimator,
SVD servers more as full-order mapping than reduced-order
mapping, by which the dominant linear components are reserved
for further reconstruction. In this way, the nonlinear, especially
high-frequency nonlinear component, could be filtered before
reconstruction. To maintain consistency with the previous sections,
the SVD operations are set to have the same order as the rank of X,,,
resulting in the matrices with dimensions of: Uy is with m x n, Sy is
with n x n, Vy is with k x n. Matrices with subscript p take the same
dimensions as introduced in Section 2.2. Instead of a reduced-order
model, the model that fits the SVD states is regarded as a recon-
structed model:
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zi.zj] =Flzre,zd] Z€R", z4€RP, (11)

X4 = Hzrc,zq] XgER™

The reconstructed states have the following linear relation with
true states through using the corresponding left-singular vectors:

Zre zugz zeR", (12)
T m
xqg =Uyx xeR".

State matrices could be obtained by solving the following linear
least-squares problems:

ming | [UpX; . X{) = FIURXp, Xdl |

e . F (13)
mmHHUXX — H[UTXp, Xg] HF
And the solutions are
;
F = [UpX}. X{ZpV). Xal', (14)
H =5 VIV Xy

In terms of dimensions, F is with (n + p) x (n + p) and H is with
n x (n + p). When the reconstructed model obtained, the estimated
flow % is reconstructed from the output Xy:

% = Uxky. (15)

As a comparison, diagrams of the proposed three forms flow
estimator are drawn in Fig. 1. After the estimator parameters are
identified, the measured states and deterministic states are input
into the Koopman linear flow estimator, which processes the inputs
to the estimated flow output as the shown diagram.

3. Wind turbine wake: simulation and sensors configuration

In this study, the flow estimator is designed to reconstruct the
flow in three-dimensional space, including a wind turbine wake
region. This section introduces the studied case configurations and
data acquisition. The sensor configurations are optimized using a
genetic algorithm-based optimization procedure. Based on a series
of quantitative analyses, the number of sensors is determined as
five, by which functional flow estimators with acceptable accuracy
are achieved.

3.1. Simulation configuration and data acquisition

Firstly, the three-dimensional wind turbine wake data is

Sensor Sensor Sensor

measured states Deterministic states

measured states measured states  Deterministic states

z

Lifted states

Extended form ExtDMD form

2t=Az [*,2i 1 =Alz 24
2=0Cz 2=C|z,2]

Basic form

[z 20} = Fl20e, 2}

Bro =H [2re, 2a)

Inverse transform

z

Estimated flow

Estimated flow Estimated flow

Fig. 1. Diagram of the proposed Koopman linear flow estimator.
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obtained from high-fidelity simulations. Simulations are carried
out using a large eddy simulation tool of Simulator fOr Wind Farm
Applications (SOWFA). SOWFA is a set of computational fluid dy-
namics (CFD) solvers, boundary conditions, and turbine models
based on the OpenFOAM CFD toolbox developed at the National
Renewable Energy Laboratory (NREL). It includes a version of the
turbine model coupled with FAST. Wind turbine and wind farm
performance can be investigated with a full range of atmospheric
conditions and terrain. Detailed SOWFA introduction and configu-
ration are referred to Ref. [7].

In this study, a DTU 10 MW wind turbine is simulated in SOWFA.
The simulated region covers a large area, including both upstream
and downstream regions of the wind turbine, in order to simulate
the wake appropriately. Wind speed in the wind turbine down-
stream area, i.e., the wake region, is measured. The simulated space
and the measured area are shown in Fig. 2. During simulations, the
simulated space is divided into fixed-size cells with equal length in
three directions, and wind speed on each cell vertices is measured.
This paper only uses the axial velocity, considering it is the main
component and has the most significant energy in the true flow.

The simulation runs a total of 3000 s. After 1500 s of simulation,
the wake has been fully prorogation and expanding. A measured
space is selected from the simulation space and measured every 2 s.
The measured data is divided into identification dataset and vali-
dation dataset. The simulation configurations are listed as tables in
Appendix. D, which include the simulation and measurement
configurations in Table 3, wind turbine properties and ALM con-
figurations in Table 4. Detailed instructions about the DTU 10 MW
wind turbine and its ALM configurations are referred to Ref. [27].

3.2. Sensor configuration optimization

As shown in the introduced forms, the measured velocity at
setting locations provides direct information of the flow field and
plays an essential part in the flow estimator. Especially for the basic
form, probe measurements are the only known information, while
the added deterministic states in extended forms improve the ac-
curacy helpfully. The measurement sensor's configuration in the
flow field should be optimized to pursue higher accuracy than an
intuitive configuration. In this subsection, the integer-
programming optimization method is introduced to optimize the
measurement sensor configurations. The optimization is adopted
on the basic form to ensure an optimal sensor configuration
without deterministic states.

In the industrial field, the sensors could be placed at any location
in space as long as the studied space is reasonable. Since the pre-
obtained simulated three-dimensional flow data is divided into
cells, the selection in probes is better on the existing cells to avoid
extra errors due to data completion and interpolation. Not just
simulations, with an industrial wind turbine wake measurement
using 3D scanning lidar, the flow is also measured at the number of
data points on the laser beams and forms the three-dimensional
flow after post-processing. Therefore, the sensor configuration

Inflow plane Outtlow plane

Inflow wind

Measured space

i
]
1
1
)
]
1
:
— L]
— ,// )

Fig. 2. Simulation space and the measured space. The Measured space is a three-
dimensional space which starts from the wind turbine location and covers the wind
turbine wake zone.
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optimization problem can be constructed and solved as an
nonlinear integer-programming (NILP) problem. All measurement
cells in the simulated space domain have a unique integer number
starting from 1. The optimized parameters are maintaining integer
numbers, which represent physical cells. During optimization, the
Root Square Error (RSE) of the estimated and true flow is used as
cost function J and defined as follows:

L2
Xie — Xig| (16)

~ k m
s, - 33

in which X; ; is the i-th element of the estimated flow at time step t.
r represents the Frobenius norm. m is the number of measure-
ment points. k is total measurement time steps.

The proposed NILP problem is solved using a Genetic Algorithm
(GA) called from Matlab. Considering the wide applicability of GA
for different types of cost functions, most linear and nonlinear
optimization problems could be satisfactorily solved. Detailed
methods and applications are referred to Refs. [28,29]. During op-
timizations, the lower and upper boundaries ensure the variables
remaining in a feasible region with desired physical meanings. An
optimal solution is achieved, by which five optimized cells are
selected from the studied space and play the role of sensors. The
optimized sensor configuration is used for the designed three forms
of flow estimators, and the performance will be compared later.
Based on the error evaluation criterion RSE, a fitness index is
introduced to analyze the fitness:

Fit—Dyn = 1—HX_€<HF x 100%
x|,
k m Xi,t*j(i,t2
=|1- DY ——<— | x100%. (17)
=1 i=1 Xi,t*Xilz

The suffix ‘-Dyn’ indicates that this index calculates the fitness for
the dynamic wake without the mean value. Using the sensor
optimization procedure, an optimal sensors configuration plan is
achieved, and the fitness with the change in sensors number is
drawn in Fig. 3. The sensor number starts from 5 and increases to 17
in steps of 2, and only the flow estimator in basic form is analyzed.

As shown in Fig. 3, the 5-order basic form flow estimator ach-
ieves an acceptable reconstruction accuracy higher than 55 %. Once
the mean flow is also considered, the reconstruction accuracy will
be higher than 99.3 %. With the number of measuring sensors
increasing, the flow field reconstruction accuracy is improving. The
17-order flow estimator has good Fit-Dyn higher than 67 %. This
trend consists of the DMD-based wind turbine modeling in

70 T T T T T . T .
65 + 1
s
>
o
Z60f I
[
S55F 1
2 4 6 8 10 12 14 16 18 20

Number of sensors

Fig. 3. Optimal sensors configuration fitness with the change in sensors number.
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Ref. [30]. Since only the basic form flow estimator is analyzed here,
the added deterministic states will further improve the recon-
struction accuracy. Out of the industrial application possibility and
investment-friendly consideration, the 5-order probe-measured
states are used in later sections.

4. Estimation accuracy evaluation

In this section, the proposed flow estimator under different
forms are compared to evaluate the estimation accuracy. Since the
reconstruction is the main considered ability of the flow estimator,
only the estimation part in the designed flow estimator is used,
while the prediction ability will be verified later.

4.1. Fitness comparison

The designed flow estimators take a similar form as the
reduced-order model obtained by the standard DMD method. More
details could be found in B. States in the DMD-derived model are
constructed from an SVD-based reducing-order mapping, and
reconstructed following an inverse mapping in (B.6). So the 5-order
DMD-derived flow reconstruction is compared with the proposed
flow estimators. However, better reconstruction accuracy than the
DMD-derived model is not the expectation of the designed flow
estimator. Considering that the DMD states are defined on a sub-
space spanned by the dominant POD modes, the reduced-order
DMD states could be regarded as virtual sensors, although they
have no physical meanings. Such virtual sensors keep dominant
linear information of the true flow and better reconstruct accuracy
than the used physical states in this study. The proposed flow
estimator is expected to have similar but maybe lower recon-
struction accuracy as the DMD-derived model, which plays the role
of optimal benchmark in comparisons.

The states between the basic form and other improved forms are
the added observables. While in this section, the rotor-size-disk
averaged wind speeds are used. Firstly, a virtual wind turbine
(VWT) is placed in the wind turbine downstream wake flow. The
VWT has the same y and z coordinates as the real wind turbine,
while the coordinate x is adjustable. The swept area of the VWT
rotor is a rotor size disk. Averaged wind speed (AWS) on the VWT
disk is calculated as the inflow wind for the VWT. In this work, AWS
on VWTs placed in the wake from 1D to 8D are defined as the
deterministic states. Comparisons are divided into without-noise
scenario and with-noise scenario. White Gaussian noises with
fixed power are added to each measured point in the studied flow
field. The proposed flow estimator is expected to reconstruct the
true flow from the measurements with noise.

Other than the Fit-Dyn index introduced in Section 3, another
fitness index is also introduced based on the error evaluation cri-
terion of RSE:

Fit — Full _ 1—HX_XHF « 100%
IX|lp
— (18)
kK m | Xir —Xig
i e s . « 100%.
t=1 i=1 |Xlt}

Unlike Fit-Dyn, Fit-Full retains the mean flow; thus, it represents
the full-wake flow modeling accuracy. Strictly speaking, the Fit-Dyn
index suits better as a quantitative index than Fit-Full, considering
the mean flow is subtracted, and only the dynamic part is calcu-
lated. However, it requires an acceptable modeling/identification
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accuracy to ensure the fitness within an acceptable range. Once
large deviations exist, the dynamic flow fitness might be negative,
which shows no meaning. Thus, both are introduced. The fitness
indexes are adopted to the validation case after the flow estimator
is trained using the identification dataset. Results are shown in
Table 1.

It can be found that, in the without-noise scenario, good accu-
racy is achieved by the basic form flow estimator, and the added
deterministic states still improve the reconstruction accuracy: the
extended form achieves similar accuracy as the DMD-derived
model. On the other hand, once the SVD is included in the flow
estimator, fitness in the without-noise scenario reduces: the ext-
DMD form fitness is lower than the extended form. This phenom-
enon could be easily understood: a full-order SVD can be regarded
as a linear approximation of the underlying nonlinear dynamics. In
this way, some of the dynamics, especially the nonlinear part, are
filtered.

Although the loss of information is inevitable, it may not be
wrong. Once the measurement noise is added, the situation is
different. As shown in Table 1, the ext-DMD form flow estimator
takes the best performance than the basic form and the extended
form. Compared with the loss information in the without-noise
scenario, the SVD operation works as a filter under the with-
noise scenario that the irregular nonlinear high-frequency noise
will be filtered before flow reconstruction. Thus the true flow can
be approximated by the flow estimator in the ext-DMD form.
Another thing to note is that, the basic form reconstruction accu-
racy is too bad that a negative Fit-Dyn has been resulted. The fitness
comparison has to be carried out on the Fit-Full index. The added
deterministic states help significantly that the estimation error is
highly reduced: Fit-Full of the extended form is higher than the
result of the basic form. Despite this, the Fit-Dyn of the extended
form is still negative, which means that the estimation accuracy is
terrible. The ext-DMD form has the highest Fit-Dyn among all three
estimators, approximately half Fit-Dyn compared to the DMD-
derived model.

4.2. Reconstruction error visualization

The absolute average errors between the reconstructed flow and
the true flow on the hub-height section are shown in Figs. 4 and 5. It
shows the results of without-noise scenario and with-noise sce-
nario separately. Sub-figures are set with the same color bar in the
same parameter region to ensure fair comparisons. The extended
form and ext-DMD form achieve similar effectiveness as the DMD
model when ignoring the measurement noise. Both are better than
the basic form. Consistency is shown during comparisons: the ev-
idence modeling error is mainly distributed at the far-wake region
and the wake outer boundary. The rotation of wind turbine blades
leads to a periodic change of velocity at the wind turbine location,
which has not been appropriately modeled.

In Fig. 5, the difference in reconstruction error under the with-
noise scenario is shown more clearly than the without-noise sce-
nario. The reconstruction bias of the basic form is particular: the

Table 1

Comparison of three flow estimators with DMD-derived model.
Fitness (%)  Without-Noise With-Noise

Fit-Dyn Fit-Full Fit-Dyn Fit-Full

Basic 53.63446336  99.29331061 —220.3070049 95.11797816
Extended 56.02613984  99.32976381  —61.59428722  97.53702908
Ext-DMD 54.97115286  99.31368402 9.671978454 98.62324780
DMD 56.68645340 99.33982811  21.76660281 98.80759038
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Fig. 4. Absolute average error on the hub-height section (without-noise scenario).
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Fig. 5. Absolute average error on the hub-height section (with-noise scenario).

free-flow field out of the wake region is shown to have a constant
error. In the far-wake zone, the modeling error around the wake
outer boundary is also clearly marked. The bias of the free flow is so
evident that the wake shape is clearly addressed. Once the deter-
ministic states are added, the bias is reduced significantly. As to the
extended form result, the far-wake region and the region close to
the wind turbine have a similar model bias as the without-noise
scenario, while random noises are also captured. The noise is
clear enough and visible. Furthermore, the ext-DMD form filters the
measurement noise effectively that the whole figure becomes
cleaner. Nevertheless, the DMD-derived model maintains the best
effectiveness. Although the reconstruction bias is shown to be
similar to the DMD model and ext-DMD flow estimator, measure-
ment noise under the DMD model has been filtered more effec-
tively than the ext-DMD form. Such a feature could be explained.
Although the same SVD to the probe-measured dataset is adopted
as the full-flow field in the ext-DMD form in (10), five sensors are
still not enough to provide sufficient dynamic information of the
underlying full flow that the measurement noise can be perfect
filtered. One can believe that higher reconstruction accuracy and
better noise filtering result could be achieved if measurement
sensors are increased.

4.3. The frequency domain performance

Apart from the time-domain comparisons, the reconstruction
accuracy in the frequency-domain is also important. Therefore, two
VWTs are placed at 5D and 8D downstream, and the VWTs’ AWS are
analyzed using Fast Fourier Transform (FFT). Results are given in

" ——True flow
~——FE-Basic
FE-Extended
——FE-EXDMD
——DMD

Amplitude

102
Frequency(Hz)

[ ——True flow

~——FE-Basic
FE-Extended
——FE-ExtDMD

Amplitude

Frequency(Hz)

Fig. 6. Frequency-domain characteristic comparisons (Top: 5D downstream. Bottom:
8D downstream).

Fig. 6.

The first thing we noticed is that the wake performance at 5D
and 8D downstream are different, but both the proposed estimators
and DMD achieve good approximation in the frequency domain. In
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5D downstream analysis, the compared four methods approximate
the true flow frequency characteristics properly at the wake
meandering frequency spike and higher-frequency region. The
proposed flow estimator in the extended form matches the true
flow among all four methods in the lower-frequency region. In the
bottom of Fig. 6, the 8D-downstream location frequency charac-
teristics are different. On the one hand, the extended form-
estimated flow still has the closest frequency-domain perfor-
mance as the true flow. The approximation in both high-frequency
and low-frequency regions is excellent. On the other hand, apart
from the extended form, the results of three methods, including
DMD-estimated flow, have explicit biases from the true flow in the
frequency domain. The basic form has the most significant error.

In [30], the frequency-domain analysis demonstrates the clear
estimation error, especially in high-frequency region by DMD-
derived dynamic wake models. Considering the system order and
linear-representation form, losing information in frequency
domain, especially high-frequency regions, is inevitable during
DMD-derived dynamic wake modeling. It is also a typical feature
during dynamic flow approximation using finite-dimensional
linear-approximation methods in current research. Unlike the
DMD model, the proposed flow estimators take physically
measured parameters as states, capturing part of the wake per-
formance in the high-frequency region. Thus, the extended form
could achieve good approximation in the frequency domain, even
better than the DMD model. But the loss comes with gain. The
extended form shows less robustness than the ext-DMD form and
DMD model. In general, both the three proposed flow estimators
and the DMD model achieves good frequency-domain approxi-
mation, but the information loss is also evident. Better frequency
accuracy requires further studies.

5. Prediction ability verification

As mentioned above, only five probes are used to provide direct
information in the flow field. The added deterministic states in the
extended and ext-DMD forms are also with limited scales. This
raises another question: whether the dynamic part in the flow
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Fig. 7. Poles of the flow estimators and the DMD model. (Top left: basic form; Top
right: extended form; Bottom left: ext-DMD form; Bottom right: DMD model.)
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estimator has the desired prediction function? To answer this
question, in this section, the prediction ability of the flow estima-
tors is verified. Firstly, poles of the proposed flow estimators are
calculated and visualized in Fig. 7. The unit circle is drawn as a
stability reference.

As expected, not all poles are located on the real axis. Complex
poles with imaginary parts are observed in all three forms esti-
mators. This evidence indicates that the dynamic part does describe
a dynamic system. At least one oscillating mode got identified. The
basic form has a pair of complex poles and three real poles, of which
two poles are too close to be identified. Once the deterministic
states are evolved, poles of the extended form and the ext-DMD
form are almost identical but with a little difference: five poles
locate on the real axis while others are complex poles. Poles of the
DMD model show the true dynamics of the full flow field, where
two complex pole pairs and one real pole are identified. Some
consistency can also be noticed in this figure: the real pole and a
pair of complex poles of the DMD model are observed in the poles
of all three flow estimators, of which the poles are close but not
identical. The close poles verify the effectiveness of the dynamic
part for prediction ability: the flow estimators in three forms cap-
ture some true dynamics of the wake. It is worth mentioning that a
complex poles pair in the DMD model is actually out of the unit
circle, which should be regarded as unsteady poles pair. Never-
theless, it is very close to the unit circle even can not be identified.
This is normal in dynamic system identification and can be elimi-
nated by regularization if necessary. Meanwhile, all poles of the
flow estimators remain in the unit circle and ensure stability.

Since the sensors can be selected in the studied space, poles of
the flow estimator with different sensor configurations should have
some consistency: randomly placed sensors should achieve similar
characteristics since they all approximate part of the full-wake
dynamics, which could be similar complex pole pairs. Out of this
consideration, the sensors are placed randomly in the studied
space, and the resulted poles of the basic form estimator are plot in
Fig. 8. A total of 100,000 groups are analyzed, all sensors are limited
in the wake region to ensure data validity, and only the complex
poles are drawn.

In Fig. 8, DMD poles are marked in red, and the characteristics
are obvious. Poles are not distributed in the unit circle arbitrarily.
On the contrary, most of the poles are located near the right side of
the unit circle and within a sector enclosed by the origin and the
DMD poles. More specifically, poles could be divided into two
clouds: most of the poles locating on the right side are marked as
the central-pole cloud, some other pole near the imaginary axis and
forms an arc shape is marked as the arc-pole cloud. In the central-
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Fig. 8. Consistency check. Poles of the basic form flow estimator once the sensors are
placed in the wake randomly. Pole of the 5-order DMD model are drawn in red, and
unit circle is drawn in blue as the stability boundary. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of this
article.)
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pole cloud, most poles are close to the complex pole pairs of the
DMD model, which is the same as the analyzed pair above. Besides,
the DMD-model real pole on the right side is sometimes identified
as close pole pairs with a large real but small imaginary part. The
central-pole cloud matches the consistency as expected. In addition
to the central-pole cloud, the arc-pole cloud shows unique char-
acteristics. Some poles intersect the unit circle at a particular po-
sition, similar to the intersect at the DMD poles in the central-pole
cloud. A pair of DMD poles is expected to be located at the inter-
section point. Such a feature is beyond the captured dynamics of
the five-order DMD model. Therefore, it has not been further
analyzed in this paper.

The fitness of the flow reconstruction under the prediction
modes is also compared. Firstly, the measured states are obtained at
a given time. States in the following period are calculated using the
prediction part in the introduced flow estimator. After future states
are predicted, the flow is estimated using predicted states and
estimator part. The flow estimators keep the same sensors config-
uration plan as the above section and are compared into different
forms. In the following analysis, validation results under the
without-noise scenario are compared from 5 to 250 times predic-
tion in five steps. Considering the measured data are obtained in 2 s
steps, the predicted period is 10—500 s in steps of 10 s. The
modeling accuracy is analyzed through the quantitative criteria Fit-
Dyn.

As shown in Fig. 9, the DMD model has the highest modeling
accuracy during the whole prediction period. Although the general
trend is the same: with increased prediction horizons, the fitness
decreases continuously. Some differences are still significant and
addressed as follows. Firstly, the extended form has the highest
modeling accuracy but is still lower than the DMD model. The ext-
DMD form has a similar but slightly lower Fit-Dyn than the
extended form, and the basic form has the most insufficient pre-
diction accuracy. Secondly, the compared methods have a similar
trend with the increase in prediction steps but different decrease
ratios. The basic form Fit-Dyn is decreasing quickly, while the DMD
model has the slowest decrease ratio. With the further increase in
prediction steps, Fit-Dyn of the basic form gradually stabilizes to a
particular value, so are the extended and ext-DMD form estimators.
Such characteristic is not observed on the DMD-model Fit-Dyn, at
least in the current prediction process. This may due to unstable
poles of the DMD model, while all poles of three flow estimators are
stable. Further study is required to explain this phenomenon,
which is not presented in this work. Nevertheless, acceptable ac-
curacy is guaranteed even after a 500 s prediction: the Fit-Dyn of
three proposed flow estimators is higher than 43 %. If the mean
flow is retaining, the Fit-Full is higher than 99.1 %.

6. Connections with stochastic estimation related methods

The estimation part in the proposed flow estimators have the
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Fig. 9. Predictive fitness.
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same ability as the stochastic estimation (SE) methods that, the full-
flow field is reconstructed from a few physical-measured parame-
ters. Besides, the basic form estimation part in Section 2.2 takes the
same form and solution as LSE in Ref. [15]. In this section, the
proposed flow estimators are compared with SE-related flow
reconstruction methods, by which the reconstruction ability is
focused. Specifically, four flow reconstruction methods are
compared with the proposed flow estimator as follows:

@ LSE-POD: In Ref. [31], the LSE-POD method is introduced as a
complementary technique like POD to identify the fluid
structure. It first constructs an estimated flow from probes
measurement using LSE, then decomposes the estimated
flow using POD and reconstructs it on a few POD bases. Both
LSE and POD operations are linear. It has been applied to
wind turbine inflow reconstruction in Ref. [32].

@ POD-LSE: The POD-LSE method is introduced in Ref. [26]. It is
an alternative way to combine POD and LSE that the POD is
applied to the true-flow field and measured flow, and LSE
constructs a mapping from the true-flow POD-temporal co-
efficient to the measured one. Once a measured flow is
achieved, POD is first adopted, then the temporal coefficient
of the true flow is estimated. Finally, the estimated true flow
is reconstructed from the estimated POD-temporal
coefficient.

@ QSE: The Quadratic Stochastic Estimation (QSE) is introduced
in Ref. [33]. Unlike the linear item in LSE, a quadratic term of
the measured states is also included in QSE, which is ex-
pected to capture more dynamics. The linear and quadratic
coefficients are connected and solved together to minimize
the mean square error.

@ QSE-POD: In Ref. [34], the QSE-POD is introduced to estimate
the cavity flow fields. Similarly as the LSE-POD method in
Ref. [31], QSE-POD also constructs the estimated flow field
using QSE, then finishes the decomposition and reconstruc-
tion using dominant POD modes. As can be seen, the
quadratic form is used during estimation, but only the
dominant linear modes are kept after POD.

The introduced four methods are applied to the studied wind
turbine wake, while the sensor configuration consists of the pro-
posed flow estimators. The comparison results are listed in Table 2.

Among the linear methods, the first noticed thing is that the
LSE-POD reaches almost the same results as the basic form, only
with very little difference in Fit-Dyn under the without-noise sce-
nario. It seems like a wrong result, but we confirm that the POD-
reconstructed flow differs from the LSE estimated one. Such con-
dition dues that the estimation basic comes from the measured
flow information, i.e., five probes measured velocity in this study.
Considering the number of probes and the linear form in LSE, the
captured flow field is limited to several linear modes. Also, the
estimation part in the basic form is the same as LSE. Therefore, the

Table 2

Comparison of three flow estimators with SE-derived model.
Fitness (%) Without-Noise With-Noise

Fit-Dyn Fit-Full Fit-Dyn Fit-Full

Basic 53.63446336 99.29331061 —220.3070049 95.11797816
Extended 56.02613984 99.32976381 —61.59428722  97.53702908
Ext-DMD 54.97115286 99.31368402  9.671978454 98.62324780
LSE-POD 53.63446334 99.29331061 —220.3070049 95.11797816
POD-LSE —44.14563767 97.80297608 —-82.09706950 97.22453191
QSE 55.01053546 99.31428428 -107.1421499  96.84280242
QSE-POD 53.64917103 99.29353477  —-52.04458326 97.68258275
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only information loss between basic form and LSE-POD are the POD
projection and reconstruction, which is few. Nevertheless, POD
after LSE still provides an excellent way to study the flow structure.
The results of POD-LSE are different. As shown, the POD-LSE results
are very different from the other methods: reconstruction accuracy
under both without- and with-noise scenarios are horrible due to
the limited sensors. In the original POD-LSE study of [26], the POD-
LSE input data is a two-dimensional flow with a fine grid, while the
flow on a coarse grid is reconstructed. The key step during POD-LSE
is the POD-coefficient estimation of the to-be-reconstructed flow.
For the reconstruction from fine gird to coarse gird in Ref. [26], this
step is established that the measured data capture dominant flow
behavior. However, measured data of only five probes are used to
reconstruct the full wake flow in this work. Although the probe
configurations are optimized, one can believe that the captured
flow behavior of the measured data is not sufficient that the POD
coefficients of aimed flow could be estimated appropriately.

The POD-LSE and LSE-POD methods share similar characteristics
with the designed flow estimator. Functionally, the POD operation
to the estimated/true flow works as a filter, by which the complex
fluid is first decomposed into linear POD modes. The reconstruction
part only takes dominant POD modes that the high-frequency
components and nonlinear parts are filtered. For the POD-LSE
method, the POD operation can be regarded as a priori filter,
while it is a posteriori filter for the LSE-POD method. Results under
the with-noise scenario also show the advantage of the ‘filter’. The
POD-LSE results under the without-noise scenario are the lowest
among all seven compared methods. Once the measurement noise
is included, the reconstruction accuracy of POD-LSE is remarkably
higher than the basic form. But in LSE-POD, the estimated flow after
LSE losses too much information that the POD can not help much.
That is the reason why the POD-based projection is also used in the
proposed flow estimator. In (11), the reconstructed states z is
obtained from a linear projection, in which the projection space is
given by the n-th POD modes of Xp,. We can ignore the deterministic
states in the ext-DMD form, and the resulting estimator shares a
similar form with the POD-LSE method. The difference is that LSE
constructs linear mapping between POD coefficient in POD-LSE in
Ref. [26], while in this paper, LSE maps the reduced-order states
and outputs. The procedures are similar. However, during the so-
lution in POD-LSE, eigenvalue decomposition is used to make sure
the linear mapping is constructed between two unitary matrices. In
contrast, it is not used in the designed estimator since the deter-
ministic states are included.

Once we include the quadratic term, the reconstruction accu-
racy is improved. The QSE method has better accuracy than stan-
dard LSE (the basic form flow estimator) and LSE-POD in both with-
and without-noise scenarios. The added quadratic term in QSE fills
the missing modeling gap between true flow and the LSE-modeled
flow. However, after QSE decreases the reconstruction bias under
the without-noise scenario, the POD operation increases under the
with-noise scenario. This interesting phenomenon seems contra-
dictory but can be understood easily. QSE models the full flow from
probe measurement using the linear term together with the
quadratic term in the without-noise scenario. But the POD is a
linear projection in essential that the quadratic term modeled part
is partly filtered. This could be verified by the close accuracy be-
tween QSE-POD and the basic form under the without-noise sce-
nario. In the with-noise scenario, some unnecessary information
like noise is also partly approximated by QSE. These mistakenly
approximated noises are filtered by POD so that the reconstruction
accuracy of QSE-POD is better than QSE. Despite this, we are glad to
see that the proposed flow estimators still achieve the best
reconstruction accuracy among all seven compared methods. Un-
der the without-noise scenario, the extended form has the highest

10

Energy 238 (2022) 121723

Fit-Dyn and Fit-Full; both are higher than QSE, the second rank. The
added measurement noise changes the accuracy that the ext-DMD
form rank first, while the QSE-POD and extended form following
behind. Such results further illustrate the necessity of deterministic
states that the extended form reach acceptable accuracy under
with-noise scenario, even the ‘filter’ function is not included.

Although we address that the estimator part in the basic form is
the same as LSE, something important still should be noticed. In
typical LSE study like [31,33], the state parameters are different
from the estimator parameters. Take [31] as an example, both u and
v are measured at the set probes. In this way, the Reynolds stress
and two-point correlation tensors are used as states instead of
directly measured velocity. Furthermore, measurements in an
estimating event are time series, and several estimating events (in
Ref. [31], K events) are considered. In this work, the LSE/basic form
flow estimator is adopted simply: only one estimating event and
only the streamwise velocity is studied. The states and outputs are
the same kinds of variables. A dynamic part is also constructed
using the standard DMD method in the basic form other than LSE.
The dynamic equation partly captures or approximates the full-
flow dynamics to predict the flow field in future steps. Although
Fig. 7 verifies the dynamic ability that complex pole pairs approx-
imate part of the flow dynamics, loss in higher-order dynamic
characteristics in Fig. 6 and the fitness decreasing during long-term
prediction in Fig. 9 are still worrying. The number of sensors limits
the captured dynamics, but methodological improvements can still
be adopted to improve prediction accuracy.

7. Conclusion

This paper proposed a Koopman-linear flow estimator based on
the Koopman operator theory and extended dynamic mode
decomposition method. The wind turbine wake flow was recon-
structed using the designed flow estimator with a few probe-
measured velocities and limited deterministic states. Distin-
guished from the states, the flow estimator was designed into three
forms: the basic form, the extended form, and the ext-DMD form.
Similarly, the measured probe data is always required, which pro-
vides direct information on the flow. The measured probe data in
both basic and ext-DMD forms were mapped to the POD subspace
that only dominant linear components were reserved. Using a
heuristic integer-programming method, five probe sensors were
placed optimally in the studied wake flow. Comparisons in time
domain and frequency domain verified the effectiveness. Like the
DMD-derived dynamic wake model, the proposed flow estimators
maintained linear dynamic state-space forms that the wake flow in
future steps could be predicted, among which the extended form
had the closest frequency performance as the DMD-derived model.
Meanwhile, all three estimators kept good predictive accuracy
under long-term predictions. Once we ignore the dynamic predic-
tion that only the flow reconstruction is considered, the proposed
estimators would have good or even better accuracy than the sto-
chastic estimation-related methods. Besides, comparisons in
without- and with-noise scenarios verified the robustness of the
proposed estimators, especially the ext-DMD form.

The proposed flow estimators provide a new way to approxi-
mate the dynamic wind turbine wake, taking advantage of
reduced-order modeling and flow reconstruction. It helps further
understanding of the wake effect, especially combined with phys-
ical measures. In practice, the proposed flow estimators serve as
dynamic wake reduced-order models, in which measurable states
also help further improvements like Kalman filter and Luenberger
observer. Other than that, the estimation part is a new flow
reconstruction method like linear stochastic estimation. In future
work, the estimation part can take advantage of stochastic
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estimation-related methods like quadratic stochastic estimation to
achieve higher reconstruction accuracy, considering that it is rela-
tively independent from the dynamic part. It is also restricted by
specific application scenarios once linear form is required. The
theoretical feasibility of the proposed flow estimators is guaranteed
by the Koopman operator theory, guided by which the flow esti-
mators could be easily applied to controlled scenarios in future
works.
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Appendix A. Koopman Operator Theory

Consider an uncontrolled nonlinear system which can be given
as the following form:
xt =f(x)xeM, (A1)
in which M is the state space of x. g : M— R is a function of system

which often referred to as an observable, f{x) is a nonlinear function
of x. The Koopman operator is a linear transformation defined by

(Kg)(x) = g(f(x)),

for every g belonging to F, which is a space of functions invariant
under the action of the Koopman operator [25]. That is to say, the
Koopman operator updates the observable g based on the evolution
of the trajectories in the state space. Crucially, the Koopman oper-
ator fully captures all properties of the underlying dynamical sys-
tem and is always linear even if the underlaying system is
nonlinear. Similar as linear systems, the observable ¢ is marked as a
Koopman eigenfunction associated with Koopman eigenvalue A C
once the following equation holds:

(A2)

Ko = Ao. (A.3)

And the spectral properties of the Koopman operator can be used to
characterize the state-space dynamics. For further information and
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detailed explanation in Koopman operator theory [18,25], can be
referred.

Appendix B. Dynamic Mode Decomposition Method

Consider a nonlinear uncontrolled discrete dynamic system in
(A1) as:
Xkp1 =f(Xp), (B.1)
where xR" is the state vector, subscript k represents the time
step. A collection of snapshot measurements x, €R" fork=1, 2, ...,
m is obtained for the nonlinear system via experiments. The

collected data are organized into two datasets Xp and X; in the
following form:

Xo
X1

= [X17x27 "'7x1117]}7

= [X27X3,...,Xm]. (B.2)

The full-order linear operator A approximates the nonlinear system
can be computed such that:
A=XiX}, (B.3)
where XL indicates the Moore-Penrose pseudoinverse of Xg. Di-
mensions of the dataset are (m — 1) x n for both Xy and Xj, so the
full-order A matrix should be (m — 1) x (m — 1). DMD attempts to
find a low-rank matrix A, capturing the most critical dynamics of
the dataset and fitting the snapshots.

The r-th order singular value decomposition (SVD) of Xy can be
written as:
Xo = Uz, VT, (B.4)
where = is a diagonal r x r matrix with non-negative real numbers
on the diagonal, V; (the right-singular vectors) contains eigenvec-

tors of XSXO, U; (the left-singular vectors) contains eigenvectors of
XoX3. Both U; and V; are unitary matrices that satisfies U;! = UT

and UUT = I, where I, is a r x r identity matrix.
The truncated, reduced-order model takes the form:

zk11 = (UTAUy)zy = Fz, (B.5)
where the state matrix F = UTAU; € R"™" describes the dynamics of
the reduced-order subspace. The reduced-order state z = UTxeR".
After the reduced-order predicted states are calculated, full states
can be obtained following an inverse mapping:

x = Uz. (B.6)
Reduced-order state matrix F can be calculated following
F = UTAU; = UTX; (UrXo)" = UTX Vg1 (B.7)

Eigenvalues and eigenvectors of F are calculated as Fw = Aw, the
DMD mode ¢ corresponding to the DMD eigenvalue 4 is then given
by

¢ = Urw. (B.8)
Under such circumstances, the DMD modes closely approximate
the Koopman modes, and the DMD method can be regarded as a
solving or approximation method to compute the Koopman oper-
ator. Another thing to note is that, though the Koopman analogy
provides a firmly mathematical foundation for applying DMD to
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data generated by nonlinear systems, it is still limited by a number
of assumptions. Detailed explains and analysis of the DMD and
Koopman operator can be referred to as [23,24].

Appendix C. Extended Dynamic Mode Decomposition Method

In [19,22], an EDMD method was proposed and proven to ach-
ieve good performance in the construction of the Koopman-linear
system. Like the DMD method, the nonlinear flow characteristic
in the EDMD method can be approximated via a linear time-
invariant system. Considering the set of states of the nonlinear
system in the form of:

= [XTaX27 '~-7Xk]7
C1
X{.x5, ... %00, (C1)

in which xj+ =T(x;) is an unknown nonlinear function. For this
uncontrolled system, states' value is assumed to be unavailable, and
the observable have physical meaning and can be obtained. Let

8(x) = [81(%),82(2), ..., 8m(X)] (C2)
be a given vector of possibly nonlinear observables, in which gp(x)
with specified subscript is an observable. These functions may
represent user-specified nonlinear functions of the state as well as

physical measurements. The collected snapshot measurements of
the system are

Xiite = [8(x1),8(X2), ... 8(xk)], (C3)

XlJirft = [g(XT),g(X;), 7g(xlj)]
The measurement matrix is marked with subscript lift for dis-
tinguishment with the original states. Based on the collected data,
an observer can be constructed to estimate the state values while
approximating the underlying nonlinear dynamics of the uncon-
trolled system, which takes the following form:

zt =Az zeR"

; ’ c4
X =Cz xeR™, (C4)
where z is the observer states and z" = Az describes a linear
approximation of the nonlinear function x™ = T(x), and X is the
estimated states x. State matrices A, C are obtained by the solution
to the linear least-squares problems:

Table 3
Simulation and measurement configurations.
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; +
ming HXlift — AXHft

‘F ’ (C5)

minCHX — e

‘F’

where
(C5)is:

- [t

The matrix A describe the linear dynamics of the Koopman-linear
state z = g(x), and the estimated states X is obtained with equa-
tion (C.4).

To achieve satisfactory accuracy, the snapshot matrix Xjjg is
usually fat, i.e., the number of columns exceeds the number of rows.
Hence, the Moore-Penrose pseudoinverse of Xjg is calculation
heavily. An alternative solution can be used to improve the solving
efficiency of (C.6). Equation (C.6) can be modified as follows:

r denotes the Frobenius norm. The analytical solution to

(C6)

MG =V. (C.7)
In the modified equation, M is the unknown matrix variable

A
v-[e)
and the data matrices V and G are

Xt
vV = lift X T7

|: [ llft] (C.S)

Solution to (C.7) is the same as (C.6), but the size of the matrices V
and G are independent of the number of samples k in (C.1). Thus,
the increase in samples will affect the solution result but not
directly related to the order of problem-solving.

Appendix D. Large-Eddy Simulation Configurations

Simulation Configuration

Measurement Configuration

Simulated cell numbers 800 x 400 x 400 Measured cell numbers 184 x 37 x 33
Simulated cell size 3.125m Measured cell size 9.375 m
Simulated time step 0.5s Measured time step 2s
Turbine type DTU 10 MW Measured time region 1500s—3000s
Turbine model Actuator line model Identification dataset 1500s—2300s
Free stream wind speed 8.0 m/s Validation dataset 2000s—3000s
Table 4
DTU 10 MW wind turbine ALM model parameters.
Wind turbine properties ALM configurations
Rated power 10 MW Number of blade points 40
Rotor orientation, configuration Upwind, 3 blades Number of Nacelle points 10
Rotor, Hub diameter 1783 m, 5.6 m Number of tower points 40
Hub height 119 m Nacelle sample distance 1.0 m
Cut-in, Rated, Cut-out wind speed 4 m/s, 11.4 m/s, 25 m/s Tower sample distance 3.5m
Overhang, Shaft tilt, Pre-cone 7.1 m, 5deg, 2.5deg Air density 1.23
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