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Abstract
Handling stress constraints is an important topic in topology optimization. In this paper, we introduce an interpretation
of stresses as optimization variables, leading to an augmented Lagrangian formulation. This formulation takes two sets of
optimization variables, i.e., an auxiliary stress variable per element, in addition to a density variable as in conventional
density-based approaches. The auxiliary stress is related to the actual stress (i.e., computed by its definition) by an equality
constraint. When the equality constraint is strictly satisfied, an upper bound imposed on the auxiliary stress design variable
equivalently applies to the actual stress. The equality constraint is incorporated into the objective function as linear and
quadratic terms using an augmented Lagrangian form. We further show that this formulation is separable regarding its
two sets of variables. This gives rise to an efficient augmented Lagrangian solver known as the alternating direction
method of multipliers (ADMM). In each iteration, the density variables, auxiliary stress variables, and Lagrange multipliers
are alternatingly updated. The introduction of auxiliary stress variables enlarges the search space. We demonstrate the
effectiveness and efficiency of the proposed formulation and solution strategy using simple truss examples and a dozen of
continuum structure optimization settings.

Keywords Topology optimization · Stress constraints · Augmented Lagrangian · Alternating direction method of multipliers

1 Introduction

Design of structures with local stresses upper-bounded by a
critical stress value is of paramount importance in engineer-
ing. To this end, the incorporation of stress constraints has
been an important field of study in topology optimization
of continuum structures (Duysinx and Sigmund 1998). Over
the past two decades, three computational challenges have
been recognized (Le et al. 2010; Holmberg et al. 2013), and
solutions for some of them have been proposed:

– The “singularity” problem — the feasible design space
contains degenerate sub-spaces of a lower dimension
(Kirsch 1990; Rozvany 2001). The globally optimal

Responsible Editor: Gregoire Allaire

� Jun Wu
j.wu-1@tudelft.nl

1 School of Mathematical Sciences, University of Science
and Technology of China, Hefei, China

2 Department of Sustainable Design Engineering,
Delft University of Technology, Delft, The Netherlands

solution, which often locates in the degenerate sub-
spaces, is not accessible to nonlinear programming
algorithms. It has been shown that the problem of
degenerate sub-spaces can be alleviated by relaxing
the stress constraints, i.e., the ε-relaxation originally
developed for trusses (Cheng and Guo 1997) and
its variants for continuum structures (Duysinx and
Bendsøe 1998; Bruggi 2008; Le et al. 2010).

– The local nature of stress constraints — the stress
limit applies to every material point in the domain.
This results in a large number of constraints. An often
used solution strategy is to approximate these local
constraints by a global one which can then be more
efficiently addressed, e.g., the p-norm (Duysinx and
Sigmund 1998) and Kreisselmeier-Steinhauser (KS)
function (Yang and Chen 1996).

– The highly nonlinear dependence of stress on design
variables. Especially at stress concentration regions,
stresses are sensitive to density changes in neighbor-
hoods. This leads to convergence problems: a large
number of iterations, fluctuations in the objective and
constraints, and a suboptimal objective value which
potentially could be further reduced.
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This last challenge is coupled with solutions of the first
two. For instance, the aggregation for reducing the number
of constraints may further exacerbate the nonlinearity. It
is found in the literature that research has been mostly
focusing on the first two challenges by reformulating the
optimization problem, and effective alternative approaches
have been proposed, e.g., Verbart et al. (2016, 2017), Wang
and Qian (2018).

Stress-constrained topology optimization problems (and
more general structural optimization) are typically solved by
using sequential convex programming. Notable algorithms
include the Convex Linearization method (CONLIN)
(Fleury 1989), the Method of Moving Asymptotes (MMA)
(Svanberg 1987) and its globally convergent version
GCMMA (Svanberg 2002). These algorithms make use
of (first order) approximations of objective and constraint
functions. An assessment of these optimization algorithms,
as well as general methods such as the primal-dual interior
point methods (Forsgren and Gill 1998) and Sequential
Quadratic Programming (SQP) (Boggs and Tolle 1995),
is presented by Rojas-Labanda and Stolpe (2015). The
benchmark problems in the comparative study include
compliance/volume minimization and mechanism design.
Unfortunately stress constraints are not included.

An alternative solution strategy to stress-constrained
topology optimization is to incorporate local stress con-
straints in the objective function using an augmented
Lagrangian formulation (Pereira et al. 2004). It has been
used for topology optimization based on density (Fancello
2006; da Silva and Cardoso 2017; da Silva et al. 2019) and
level sets (James et al. 2012; Emmendoerfer and Fancello
2014). Very recently (da Silva et al. 2020) demonstrated
that this formulation allows handling very large problems
in 3D manufacturing-tolerant topology optimization, with
hundreds of millions of stress constraints. Also aiming for
3D large scale optimization, Senhora et al. (2020) proposed
to modify both the penalty and objective function terms
of the augmented Lagrangian function, leading to consis-
tent solutions under mesh refinement and driving the mass
minimization towards black and white solutions. Giraldo-
Londoño and Paulino (2020) applied this to handle multiple
classical failure criteria with a unified yielding function.

In this paper we introduce an interpretation of local
stresses as optimization variables, using an augmented
Lagrangian formulation. We consider auxiliary stresses as
optimization variables, in addition to the design variables
(i.e., densities) representing the material distribution. The
stress limit is then imposed upon the auxiliary stresses
as an upper bound. Given a material distribution and
boundary conditions, the actual stress is computed by a
finite element analysis. The auxiliary stress is related to
the actual stress by an equality constraint. This equality
constraint is then incorporated into the objective function as

linear and quadratic terms using an augmented Lagrangian
form.

This reformulation offers some conceptual benefits.
Firstly, thanks to the extra set of optimization variables, it
opens a larger space for the optimization to search. It even
allows the optimization to explore the infeasible region in
the conventional formulation — the actual stress could be
larger than the prescribed stress limit. This can be beneficial
for rapid convergence at the beginning iterations. Secondly,
the stress limit is regarded as side or bound constraints
for the auxiliary stress variables, and bound constraints are
readily handled by optimization algorithms.

To efficiently solve the optimization problem with
two sets of variables, we show that the formulation is
separable regarding the auxiliary stresses and structural
variables (i.e., densities). This gives rise to a variant
of augmented Lagrangian solvers known as Alternating
Direction Method of Multipliers (ADMM). Within each
iteration, the structural variables, stress variables, and
Lagrangian multipliers are alternatingly updated. This
solver converges rapidly at the first few iterations. Our
tests on continuum structures demonstrate reduced objective
values in comparison with using the MMA family for
solving the conventional formulation.

ADMM algorithms have provable convergence for solv-
ing convex optimization problems (Boyd et al. 2011). Their
applicability to nonconvex problems has also been investi-
gated, e.g., Diamond et al. (2018). For nonconvex problems,
while ADMM is not guaranteed to converge, in practice
it can often find a reasonable objective value with small
computational cost (Kanno and Kitayama 2018). It has
been recently applied in structural optimization for prob-
lems with a few or hundreds of design variables. Kanno
and Kitayama (2018) used ADMM as an effective heuristic
for mixed-integer nonlinear structural optimization. Palan-
duz and Groenwold (2020) analyzed the applicability of
a subset of ADMM-type algorithms for optimal structural
design, in combination with a novel scaling method and
quadratic approximations of the primal problem. Eckstein
and Bertsekas (1992) pointed out that ADMM is an applica-
tion of the Douglas-Rachford splitting algorithm (Douglas
and Rachford 1956), which is in turn an instance of the
proximal point algorithm. Recently, Evgrafov and Sigmund
(2020) proposed to split stress variables into positively
and negatively semi-definite parts, and applied this split-
ting for compliance minimization in the vanishing volume
ratio limit. In this paper we adopt ADMM to solve stress-
constrained problems with a large number of variables and
constraints, and compare its performance with conventional
formulations and solvers.

Our main contributions in this work include the follow-
ing: (i) an interpretation of local stresses as optimization
variables, and (ii) an extensive comparison of different
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solution strategies for stress-constrained topology optimiza-
tion. This intuitive interpretation leads to equations that
turn out to be mathematically equivalent to those from the
augmented Lagrangian formulation (e.g., Giraldo-Londoño
and Paulino 2020). Using simple truss examples, we val-
idate that the augmented Lagrangian formulation allows
reaching the global optimum that is located in the degen-
erate sub-space, similarly to a unified aggregation and
relaxation approach (Verbart et al. 2017). Tested on contin-
uum structures, our comparison reveals that the augmented
Lagrangian formulation can achieve superior solutions in
terms of the objective value. Furthermore, we propose a
hybrid approach which based on our comparison is most
favorable regarding the objective value and computational
efficiency.

2 Alternating optimization of design
and stress

We start with a conventional density-based formulation for
stress-constrained topology optimization (Section 2.1). We
then introduce an interpretation of stresses as optimization
variables (Section 2.2). An optimization strategy to this
reformulation is explained in Section 2.3.

2.1 Stress-constrained complianceminimization

Using a finite element discretization of the design domain,
the density distribution is represented by a vector, ρ. Let
σe denote the stress tensor for generic element e when the
structure is under a constant external load, F . We introduce
a variable, αe, to indicate a scalar measure of the stress
tensor, i.e.,

αe = σ̃e. (1)

The stress-constrained compliance minimization is then
written as

(Q0) min
ρ

fc(ρ) = F TU(ρ), (2)

s.t. V (ρ) = ρTv ≤ γ 1Tv, (3)

αe ≤ σlim, ∀e, (4)

0 ≤ ρe ≤ 1, ∀e. (5)

This conventional formulation is denoted as Q0 to
differentiate from a reformulation to be introduced soon. In
the objective, U(ρ) represents the displacement vector. In
(3), vector v is composed of the volume per element, and γ

is a prescribed volume ratio. The stress constraint is encoded
by (4), where σlim is a prescribed limit on the scalar stress
measure. At last, (5) restricts the pseudo density of each
element to between 0 (empty) and 1 (solid).

The displacement vector, U(ρ), is computed by solving
a static equilibrium equation,

K(ρ)U = F, (6)

where K(ρ) is the assembled stiffness matrix. The element
stiffness matrix is calculated using the Solid Isotropic
Material with Penalization (SIMP) model,

Ke(ρe) = Ee(ρe)K0, (7)

Ee(ρe) = Emin + ρk
e (E0 − Emin), (8)

where K0 is the stiffness matrix of a solid element with
Young’s modulus E0. Ee is the interpolated Young’s modu-
lus. Emin is a small value to prevent the assembled stiffness
matrix (K) from becoming singular. k is a penalization
parameter (k = 3).

2.2 Interpreting stresses as optimization variables

An innovative aspect of our approach is to interpret
stress αe as an auxiliary optimization variable, and
consequently (1) as an equality constraint rather than a
definition. To efficiently handle the equality constraint,
the objective function is updated by incorporating an
augmented Lagrangian form of the equality constraint,

Lμ(ρ, α, λ) = fc(ρ) + λT(α − σ̃ ) + μ

2
‖α − σ̃‖22, (9)

where λ is a Lagrange multiplier and μ is a penalty parame-
ter. The conventional optimization problem is reformulated
as

(Q1) min
ρ,α

max
λ

Lμ(ρ, α, λ),

s.t. (3), (4) and (5).

Intuitively, interpreting stresses as optimization variables
enlarges the optimization space, giving extra flexibility
for searching an optimal solution. It relaxes the stress
constraint in the sense that it permits, at the beginning of the
optimization process, the actual stress (i.e., σ̃e, computed
from ρ) being larger than the upper bound. This is beneficial
for a rapid decrease of the objective at the onset of the
optimization process.

The augmented Lagrangian formulation can be solved
by simultaneously optimizing the two sets of variables, by
using for instance, MMA. To efficiently solve this formula-
tion, in the following we introduce a method to decouple the
two sets of optimization variables.

2.3 Alternating optimization

While two sets of optimization variables are employed, the
objective, fc(ρ), and inequality constraints, i.e., (3), (4) and
(5), involve either ρ or α, but not both. In other words, each
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of these functions can be separated into two parts: one part
that is dependent on ρ, and the other part that is dependent
on α. In each of these functions, one of these two parts is
null.

This so-called separability is essential for a variant of
augmented Lagrangian methods, known as the alternating
direction method of multipliers or ADMM. ADMM uses
partial updates for the variables, similar to the Gauss-Seidel
method for solving linear equations. This partial update
scheme allows an efficient search of the optimal solution in
the enlarged optimization space.

By making use of the separability, the density and stress
variables are updated alternatingly. ADMM consists of the
iterations

ρ[i] = argmin
ρ

Lμ(ρ, α[i−1], λ[i−1]),

s.t . (3) and (5).
(10)

α[i] = argmin
α

Lμ(ρ[i], α, λ[i−1]),

s.t . (4).
(11)

This is followed by updating the Lagrange multiplier,

λ[i] = λ[i−1] + μ(α[i] − σ̃ (ρ[i])). (12)

Each of the two sub-problems itself is an optimization
problem. In initialization, we set the density equal to the
prescribed volume ratio, i.e., ρ

[0]
e = γ, ∀e, and compute

α[0] = σ̃ (ρ[0]). The initial value of Lagrange multipliers is
λ

[0]
e = 1, ∀e. In the first sub-problem, the density variables

are updated, while the stress variables and Lagrange
multipliers are fixed. We solve this sub-problem by using
MMA. Alternatingly, in the second sub-problem, the stress
variables are optimized with updated densities (ρ[i]) and
Lagrange multipliers from the last iteration (λ[i−1]). In fact,
(11) is a quadratic programming problem with respect to α,
and can be reformulated as

min
α

1
2‖α − (σ̃ (ρ[i]) − λ[i−1]

μ
)‖22. (13)

Considering the bound constraint, the solution of the second
sub-problem is

αe = min{σ̃e(ρ
[i]) − λe

[i−1]

μ
, σlim}. (14)

3 Test on a two-bar truss example

Before we proceed to the implementation details of
continuum structure optimization, let us examine the
validity of the proposed approach on a simple two-bar
truss optimization problem. The example is illustrated in
Fig. 1 (Stolpe 2003; Verbart et al. 2017). The problem
is to minimize its mass subjected to a stress limit, σlim.

The design variables are the cross-sectional areas A =
[A1, A2]T . The cross-sectional area is upper bounded by
Amax = 2. Both members have a Young’s modulus E.
ρj and Lj denote the density and length of member j ,
respectively. The stress in the members is calculated by

σ1 = FL2

A1L2 + A2L1
, σ2 = − FL1

A1L2 + A2L1
. (15)

The initial problem formulation, denoted by P0, is
written as,

(P0) min
A

m(A) = ρ1A1L1 + ρ2A2L2, (16)

s.t. gj = |σj |
σlim

− 1 ≤ 0, j ∈ {1, 2}, (17)

0 ≤ Aj ≤ Amax, j ∈ {1, 2}. (18)

Figure 2a illustrates the solution space of the problem.
It is composed of the polygon region BCDEF and the
line segment EG, with the global optimum located at G.
The global optimum is located in a 1-dimensional sub-space
within the 2-dimensional solution space. Without special
treatments, the optimization reaches a local minimum in the
polygon region BCDEF .

The unified approach proposed by Verbart et al. (2017)
is included here as a reference for addressing the singularity
problem. The optimization problem is modified as

(PM
0 ) min

A
m(A) = ρ1A1L1 + ρ2A2L2, (19)

s.t. GL(ḡ; p) ≤ 0, (20)

0 ≤ Aj ≤ Amax, j ∈ {1, 2}. (21)

Here, GL denotes the aggregated constraint, based on the
p-mean function

GL =
(
1

N

N∑
i=1

(ḡi + 1)p
)1/p

− 1, (22)

with

ḡj = Aj

Amax

( |σj |
σlim

− 1

)
, j ∈ {1, 2}. (23)

Illustrated in Fig. 2b, the p-mean aggregated formula-
tion, PM

0 , enlarges the solution space to additionally include
the shaded region EF̃G. Curve F̃G corresponds to the
boundary obtained when p = 8 in the p-mean function
(Verbart et al. 2017).
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Fig. 1 A two-bar truss example
(Stolpe 2003) is used to validate
the proposed approach. The
optimization problem is to
minimize the total mass by
varying the cross-sectional
areas, A1 and A2, under stress
limit σlim

3.1 Augmented Lagrangian formulation
and alternating optimization

Following Section 2.2, we introduce an auxiliary variable
αj , and relate it to the stress by αj = σ̃j , with σ̃j = Aj

Amax

σj

σlim

1.
The equality constraint αj = σ̃j is then incorporated in the
objective using an augmented Lagrangian form,

Lμ(A, α, λ) = m(A) + λT(α − σ̃ ) + μ

2
‖α − σ̃‖2. (24)

The optimization problem is reformulated as

(P1) min
A,α

max
λ

Lμ(A, α, λ), (25)

s.t. 0 ≤ Aj ≤ Amax, j ∈ {1, 2}, (26)

− Aj

Amax
≤ αj ≤ Aj

Amax
, j ∈ {1, 2}. (27)

ADMM consists of alternatingly solving two sub-
problems, i.e.,

A[i] = argmin
A

Lμ(A, α[i−1], λ[i−1]), (28)

s.t . (26).

α[i] = argmin
α

Lμ(A[i], α, λ[i−1]), (29)

s.t . (27).
And the Lagrange multiplier is updated by

λ[i] = λ[i−1] + μ(α[i] − σ̃ (A[i])). (30)

In our test, we initialize λ[0] = (1, 1)T and μ = 0.5. μ is
multiplied by 1.05 after every 5 iterations.

3.2 Results and discussion

We compare six solution strategies for solving three
formulations, P0, PM

0 , and P1. The results are shown in
Fig. 3. In all cases, the initial values of A1 and A2 equal to
Amax = 2, corresponding to C in the solution space. The
global optimum is located at G(1, 0). Using MMA to solve

1The scaling by
Aj

Amax
is included for convergence to the global

optimum.

P0 leads to a local minimum point F(0, 1) in the polygon
region (Fig. 3a). With the p-mean aggregated formulation
PM
0 , both MMA and GCMMA are able to converge to the

global optimum (Fig. 3b and c). Figure 3d and e show results
of solving the augmented Lagrangian formulation P1 using
MMA and ADMM, respectively. Lastly, Fig. 3f shows the
results of a hybrid approach: we use ADMM to solve P1,
and, after five iterations, switch to MMA for solving PM

0 .
From Fig. 3, it can be observed that the global optimum

(G) is correctly identified using the aggregated constraint
formulationPM

0 and the augmented Lagrangian formulation
P1. This is also confirmed in Table 1. The minimal mass is
0.60. In the plots of the augmented Lagrangian formulation
(Fig. 3d and e), the path leading to the global optimum
travels beyond the feasible region. This is not unexpected
since the equality constraint α = σ̃ is transformed to
penalty terms in the objective, and thus the stress constraint
is not strictly enforced during the process. Yet, as the
process converges, the equality condition and consequently
the stress constraint are satisfied.

Discussion The augmented Lagrangian formulation reduces
constraints into a single scalar value. On this regard, it
plays the role of constraints aggregation. The augmented
Lagrangian formulation is also able to achieve what
constraint aggregation schemes can offer, i.e., allowing
an expansion of the search space and thus making the
global optimum accessible (Verbart et al. 2017). We refer
to Verbart et al. (2017) for a clever use of constraint
aggregation schemes for stress-constrained optimization.

The convergence of the total mass is plotted in Fig. 4.
ADMM is capable of rapidly reducing the objective at the
first few iterations. As it approaches the final solution,
it progresses slowly and leads to more iterations. This
behavior is known and has been discussed, for instance,
in Boyd et al. (2011). This motivates the hybrid approach
which uses ADMM to quickly find a good start solution.
The computation time is summarized in Table 1. It suggests
that the hybrid approach, ADMM (P1) + MMA (P0), is
promising in terms of the number of iterations and wall-
clock time.

In the context of continuum structure optimization which
is highly nonlinear and involves a large number of design
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Fig. 2 Solution space of the
two-bar truss problem in Fig. 1,
corresponding the initial
formulation P0 (a) and the
p-mean aggregated formulation
PM
0 (b)

variables, as will be shown in later sections, the augmented
Lagrangian formulation demonstrates not only benefit in the
computation time but more importantly in the optimality of
the optimized solution.

4 Implementation of stress-constrained
continuum structure optimization

4.1 Density operations

We adopt density operations that are commonly applied
in density-based approaches, i.e., a smoothing operator to

avoid checkerboard patterns (i.e., regions of alternating
solid and empty elements), and a smoothed Heaviside
operator for improving convergence towards black-and-
white designs (Guest et al. 2004; Wang et al. 2011).

4.1.1 Density smoothing

Instead of taking ρ as the design variable, a new variable,
φ ∈ [0, 1], is introduced as the design variable. A smoothed
version of φ is obtained by computing the weighted average,

φ̃e =
∑

i∈Se
ωe(xi, r)viφi∑

i∈Se
ωe(xi, r)vi

, ∀e, (31)

Fig. 3 Comparison of
convergence histories. The
optimization starts at point
C(2, 2). Except in (a) where
MMA is used to solve P0, in
other cases the global optimum,
G(1, 0), is reached
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Table 1 Statistics in solving the two-bar truss optimization problem

MMA (P0) MMA (PM
0 ) GCMMA (PM

0 ) MMA (P1) ADMM (P1) ADMM (P1) + MMA (PM
0 )

Mass m(A) 0.8 0.6 0.6 0.6 0.6 0.6

Time (s) 0.819 1.517 17.366 1.354 10.09 0.93

#Iterations 251 640 180 137 304 5+121

where vi is the volume of an element, and the weighting
function is defined as

ωe(xi, r) = r − ‖xi − xe‖, (32)

where r is a predefined filter radius, xe and xi are respec-
tively the centroid of element e and an element (i) that is in
close vicinity, i ∈ Se = {i|‖xi − xe‖ ≤ r}.

4.1.2 Heaviside projection

The smoothed Heaviside projection is written as

ρe = ¯̃
φe = tanh(βη) + tanh(β(φ̃e − η))

tanh(βη) + tanh(β(1 − η))
, (33)

where β controls the sharpness of the step function and η

is a projection threshold (η = 0.5). To avoid numerical
instability, we start with β = 1 and double its value every
50 iterations.

4.2 Stress relaxation

We follow the qp-relaxation scheme proposed by Le et al.
(2010) to resolve the stress singularity problem. The scalar
measure of per element stress is computed by

σ̃e = ρ
q
e σ̄e, (34)

Fig. 4 The convergence of the total mass using different solution
strategies

where q is a relaxation parameter (q = 0.5). σ̄e refers to the
von Mises stress of element e, defined by

σ̄e = (σ T
e V σe)

1
2 , (35)

where V is a symmetric matrix

V =
⎡
⎣ 1 − 1

2 0
− 1

2 1 0
0 0 3

⎤
⎦ , (36)

and σe is the Voigt notation of a stress tensor, calculated by

σe = D0Bcue. (37)

Here, D0 is the elasticity tensor in the Voigt notation for
a solid element, Bc is the strain-displacement matrix of
the element centroid and ue is the displacement vector of
element e.

4.3 Sensitivity analysis

We present the derivatives of the augmented Lagrangian
form, Lμ(ρ, α, λ), regarding density variables (φe). Since α

and λ are not functions of the density variables, ∂Lμ(ρ,α,λ)

∂φe

is computed by

∂Lμ

∂φe

= ∂fc(ρ)

∂φe

− λT ∂σ̃

∂φe

− μ(α − σ̃ )T ∂σ̃

∂φe

. (38)

Detailed sensitivity analysis is presented in Appendix 1.

4.4 Algorithm

Algorithm 1 details the process of using ADMM to solve
the augmented Lagrangian form. The algorithm takes the
prescribed volume fraction (γ ) and stress limit (σlim) as
input parameters. The output is the material distribution (ρ).
We prescribe the maximum number of ADMM iterations
IADMM = 1000 or IADMM = 20. The later is used in
the hybrid solution which uses ADMM forQ1, followed by
using MMA for Q0 (see Appendix 2 for solving Q0).
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5 Results and discussion

The proposed method is implemented using MATLAB
2018b, and tested on a desktop PC with an Inter(R)
Xeon(R) W-2123 CPU @3.60GHz and 64GB RAM. The
material model has a Young’s modulus of E = 1.0 and
Poisson’s ratio of ν = 0.3. Bi-linear square elements are
used for stress analysis. The solution strategies for the
conventional and the augmented Lagrangian formulation for

compliance minimization are quantitatively compared using
ten examples. The same termination criteria are applied:
the maximum change in design variables in successive
iterations is smaller than a threshold, ε = 10−2, and that
both the volume and stress constraints are satisfied, or the
maximum number of iterations (1000) is reached. For each
solution strategy, all examples use the same parameters,
which are selected empirically based on multiple tests using
the L-shaped beam. Important parameters in MMA include
move, asyincr, and asydecr. Based on tests, move = 0.1,
asyincr = 1.2 and asydecr = 0.7 are selected.

5.1 L-shaped beam

The first example is an L-shaped beam as depicted in Fig. 5
(left). The design domain is specified by DH = DW =
150, Dh = Dw = 90. The top edge of the domain is fixed
while a distributed force (F = 1) is applied downwards
on the right, over a short span of 4 elements horizontally.
Figure 5 (right) visualizes the von Mises stress distribution
of a compliance minimized structure which is optimized
without stress constraints, under volume ratio γ = 0.3. The
visualization indicates a stress concentration at the corner.
The maximum stress is 1.35. In the test of stress-constrained
optimization, we set a stress limit of σlim = 0.5.

The stress-constrained optimization problem is solved
using two formulations, in total six algorithms. Fig. 6 illus-
trates the optimized structural layouts and the corresponding
von Mises stress distributions. The first row is obtained
using the conventional formulation with densities as design
variables (Q0), while the second row corresponds to the
proposed formulation with two sets of optimization vari-
ables (Q1). Note that in the last approach, ADMM (Q1) +
MMA (Q0), we use MMA to solve the conventional formu-
lation rather than the new formulation which has a doubled
number of variables.

Table 2 summarizes the statistics of using different
optimization methods. The methods are grouped into two
categories according to the formulation of the optimization
problem, Q0 and Q1. The methods are comparable in
terms of constraints on the total volume, V , and maximum
stress, max(σ̃ ). Of interest here are the objective value and
computation time of these six solution strategies, which are
visualized using bar graphs in Fig. 7. In the former category,
GCMMA leads to a smaller compliance than MMA (296.61
vs 301.53), at the price of a longer computing time (1464.6
vs 759.6). GCMMA requires a smaller number of iterations
than MMA. However, on average a GCMMA iteration is
more costly than an MMA iteration. GCMMA involves
an inner loop which requires solving the state equation.
The last row (#Solves) indicates how many times the state
(and adjoint) equation is solved. The hybrid approach of
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Fig. 5 Design domain of the
L-shaped beam (left) and
visualization of the von Mises
stress distribution of a structure
optimized without stress
constraints (right)

0.1

0.2

0.3

0.4

0.5

0

Fig. 6 Optimized structural layouts and stress distributions on the L-shaped beam using different optimization methods

Table 2 Statistics of minimizing the compliance of an L-shaped beam. In the last row, #Solves refers to the number of solving the linear systems,
including both the state equation and adjoint analysis

MMA (Q0) GCMMA (Q0) GCMMA (Q0)
+ MMA (Q0)

MMA (Q1) ADMM (Q1) ADMM (Q1)+
MMA (Q0)

fc 301.53 296.61 295.91 292.86 281.99 284.93

V 0.29999 0.29803 0.29999 0.29993 0.29916 0.29982

max(σ̃ ) 0.49921 0.49933 0.49999 0.49640 0.49999 0.49664

Time(s) 759.6 1464.6 2549.0 1006.8 2473.0 894.3

#Iterations 312 203 20+811 476 464 20+376

#Solves 624 1542 1742 952 1686 872

Fig. 7 Bar graph of the objective
value and computation time for
minimizing compliance of the
L-shaped beam. The numbers 1
to 6 represent the different
solution strategies in the order
as they appear in Table 2, i.e.,
MMA (Q0), GCMMA (Q0),
GCMMA (Q0)+MMA (Q0),
MMA (Q1), ADMM (Q1),
ADMM (Q1)+MMA (Q0)
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GCMMA and MMA achieves a comparable compliance
(295.91).

The objectives from the category of Q1 outperform
those from the conventional formulation Q0. ADMM (Q1)
achieves a compliance of 281.99, which is 6.48% smaller
than that by MMA (Q0). On the last column, the hybrid
approach arrives at a slightly larger compliance, with a
reduced total computation time.

Figure 8 plots the convergence of the volume and stress
constraint (max(σ̃ ) − σlim) over iteration. It is found that
ADMM is able to quickly meet the volume constraint, in
less than 50 iterations. The stress constraints are gradually
satisfied, since the penalty term increases during the
optimization progress. MMA in general exhibits less severe
fluctuations compared ADMM. This motivates the hybrid
approach, ADMM (Q1) + MMA (Q0). The convergence in
compliance for all six solutions is plotted together in Fig. 9.
A few fluctuations in these plots are due to the continuation
of the projection parameter (β) in (33).

5.2 Step-shaped structure

The second set of experiments is performed on a step-
shaped structure shown in Fig. 10 (left). The design domain
is descried by DH = DW = 150 and Dh = Dw = 50.
A horizontally distributed force is applied on the top of 4
elements in the top right of the domain. Figure 10 (right)
visualizes the von Mises stress distribution of a compliance-
minimized structure optimized in the absence of stress
constraints, with a target volume ratio of γ = 0.25. Three
stress concentration regions can be observed. The maximum
von Mises stress is 1.16. For this example, we test three
stress limits: σlim ∈ {0.6, 0.7, 0.8}.

Table 3 summarizes the statistics of tests on this exam-
ple. In all cases, the constraints on the total volume and

Fig. 8 Plots of convergence of the volume and stress constraint (max(σ̃ ) − σlim) for optimizing the L-shaped beam
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Fig. 9 Plots of compliance convergence for optimizing the L-shaped beam

maximum stress are satisfied. From the top block to the
bottom one, as the allowed maximum stress increases, the
objective value decreases. This trend in compliance is better
visualized from the bar graphs in Fig. 11. There is however
no clear pattern in the computation time for different stress
limits.

Comparing the final objectives from the six algorithms,
it is observed that the augmented Lagrangian formulation in
general results in smaller compliance values. ADMM is able
to reduce the compliance value from MMA (Q0) by 8.78%
(σlim = 0.6), 7.73% (σlim = 0.7) and 3.16% (σlim = 0.8),
while for the hybrid strategy, ADMM (Q1) + MMA (Q0),
the reduction is 7.06%, 6.44% and 4.57%, respectively. This
reduction in objective is in agreement with results from the
previous example. In these tests, the hybrid approach have
comparable to slightly reduced computation time than that
of MMA (Q0).

As a side note, we noticed that GCMMA was sensi-
tive to the stress limit. As the stress limit became smaller,
the constraints were not satisfied after 1000 iterations
under a default setting. A parameter in GCMMA was thus
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Fig. 10 Design domain of a
step-shaped structure (left) and
visualization of the von Mises
stress distribution of a structure
optimized in the absence of
stress constraints (right)

 

Table 3 Data statistics for optimizing a step-shaped structure under three different stress limits

Factor MMA (Q0) GCMMA (Q0) GCMMA (Q0)
+ MMA (Q0)

MMA (Q1) ADMM (Q1) ADMM (Q1)+
MMA (Q0)

σlim = 0.6 fc 421.77 416.40 402.81 394.01 384.74 391.99

V 0.25000 0.24994 0.24999 0.25000 0.24999 0.24999

max(σ̃ ) 0.59949 0.59997 0.59965 0.59997 0.59907 0.59992

Time (s) 2088.8 3853.1 2309.0 2426.1 2896.8 1798.6

#Iterations 826 553 20+674 894 684 20+533

#Solves 1652 2993 1728 1788 2204 1166

σlim = 0.7 fc 403.13 388.49 374.83 389.26 371.98 377.17

V 0.24998 0.24992 0.24996 0.24999 0.24965 0.24950

max(σ̃ ) 0.69999 0.69992 0.69993 0.69919 0.69990 0.69941

Time (s) 1808.0 3970.3 2652.1 1957.6 2690.1 1677.3

#Iterations 595 576 20+531 642 585 20+521

#Solves 1190 2892 1182 1284 1956 1134

σlim = 0.8 fc 379.81 387.86 372.40 371.31 367.81 362.44

V 0.24999 0.24996 0.24992 0.24988 0.24999 0.24998

max(σ̃ ) 0.80000 0.80000 0.80000 0.80000 0.79999 0.80000

Time (s) 1964.8 3744.5 2748.5 3300.4 3032.0 2049.8

#Iterations 672 511 20+614 621 612 20+563

#Solves 1344 2770 1308 1242 2450 1206
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Fig. 11 Bar graph of the objective value and computation time for
minimizing compliance of the step-shaped structure. The numbers 1 to
6 represent the different solution strategies in the order as they appear
in Table 3, i.e., MMA (Q0), GCMMA (Q0), GCMMA (Q0)+MMA

(Q0), MMA (Q1), ADMM (Q1), ADMM (Q1)+MMA (Q0). The
triple indicates the increasing stress limits, from left to right, 0.6, 0.7
and 0.8
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Fig. 12 Optimized structural layouts and stress distributions in the step-shaped design domain using different optimization methods

modified for achieving satisfactory results. The optimiza-
tion framework of GCMMA consists of “outer” and
“inner” iterations. Within each outer iteration, depending on
whether the approximation function is conservative or not,
a number of inner iterations are carried out. The more inner
iterations, the more conservative the approximation func-
tion. We found that an increase of the inner iterations in
GCMMA from 5 to 20 was able to cope with the tight stress
limit in our example.

Figure 12 shows the optimized structural layouts and
stress distributions using different solvers, under the stress
limit σlim = 0.6. The overall layouts are similar. In all cases,
smooth geometry is developed around the sharp corners
in the design domain, alleviating stress concentration.
Interestingly, comparing (d)–(f) with (a), we find that the
vertical substructure near the stress concentration region on
the bottom corner (indicated by an arrow in (a)) is closer
to the domain boundary in (d)–(f) than in (a). Note that
in the structure optimized without stress constraints, shown
in Fig. 10 (right), the vertical substructure conforms to
the domain boundary with no gap. Similar trend can be
observed in the L-shaped designs (Fig. 6).

5.3 Parameters and discussion

5.3.1 More examples

In addition to the four tests above, six other examples
are tested. The specifications and detailed statistics can
be found in Appendix 3. To compare results of different
examples, we take MMA (Q0) as a reference, and normalize
the compliance and computation time from other solution
strategies by that of the reference. The average and standard
deviation of the ten examples are summarized in Fig. 13.
From the left, it is observed that ADMM (Q1) on average
attains the smallest compliance, followed by the hybrid

approach, ADMM (Q1) + MMA (Q0). On the right, the
comparison shows that the computation time of the hybrid
approach is marginally smaller than that of MMA (Q0).

5.3.2 Lagrangemultiplier λ and penalty parameterμ

Augmented Lagrangian formulation involves two parame-
ters: the Lagrange multiplier λ and the penalty parameter μ

in (9). These two parameters effectively control the discrep-
ancy between α and σ̃ . To achieve a smooth convergence
process, in general it is beneficial to start with small λ and
μ, and thus in the beginning iterations the combined objec-
tive is dominated by the compliance. We choose λe = 1
and μ = 0.5, such that the compliance (fc(ρ)) accounts
for more than 99.9% of the objective (Lμ(ρ, α, λ)) after
the very first iteration. To penalize the discrepancy, μ is
multiplied by 1.05 after every 5 iterations.

The evolution of the Lagrange multiplier is depicted in
Fig. 14 (right) for three iterations. The actual stress and
stress design variable are visualized in the second and third
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Fig. 13 Comparison of the different solution strategies using the
average and standard deviation from 10 examples. The numbers 1
to 6 represent the solution strategies in the order as they appear in
other comparison figures and tables, i.e., MMA (Q0), GCMMA (Q0),
GCMMA (Q0)+MMA (Q0), MMA (Q1), ADMM (Q1), ADMM
(Q1)+MMA (Q0)
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Fig. 14 Visualization of the material distribution (ρ), actual stress (σ̃ ), stress design variable (α) and Lagrange multiplier λ at three different
iterations

column, respectively. The magnitude of the Lagrange mul-
tiplier is large in regions where the stress design variable
significantly deviates from the actual stress. As the opti-
mization converges, the Lagrange multiplier takes values
close to zero (see (f)).

5.3.3 Initial iteration number

In the ADMM (Q1) + MMA (Q0) approach, a fixed number
of ADMM iterations is performed. This value is chosen
based on analyzing the stability in the compliance history.

Fig. 15 Final layouts of L-shaped structure on stress-based mass minimization topology optimization
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Table 4 Statistics of stress-constrained mass minimization on the L-shaped beam. γ is the volume ratio, i.e., γ = ρTv/1Tv

MMA (Z0) GCMMA (Z0) GCMMA (Z0) + MMA (Z0) MMA (Z1) ADMM (Z1) ADMM (Z1)+MMA (Z0)

γ 0.27425 0.33806 0.30323 0.30280 0.27115 0.27995

max(σ̃ ) 0.49868 0.49947 0.49855 0.49921 0.49948 0.49945

Time(s) 885.4 2003.6 893.3 1579.6 1265.7 805.3

#Iterations 598 252 20+613 478 341 20+560

#Solves 1196 1271 1326 956 1058 1180

We use the relative standard deviation (RSD) of the
compliance value over a period of five iterations as an index
for evaluating stability,

RSD =
⎛
⎝1

4

j+2∑
i=j−2

(fi − f̄j )
2

⎞
⎠

1
2

/f̄j , j > 2, (39)

with f̄j = 1
5

∑i=j+2
i=j−2 fi . From a number of tests we found

that it took 12 to 25 iterations for the relative standard
deviation to become less than 0.2%. Thus in our examples
we chose to run 20 ADMM iterations.

In both examples the maximum stress is of the same
magnitude to the range of density variables. We have
performed additional tests by increasing the external forces
by two orders of magnitude. Consequently the density
variables and the stress variables are no longer of the same
magnitude. In these tests, solving the new formulation by
alternating optimization of design and stress (ADMM) is
able to converge, while simultaneously solving for both
sets of variables (MMA (Q1)) does not work well. Some
scaling of the variables, possibly problem-dependent, might
be needed for the simultaneous optimization.

5.3.4 Mass minimization

Augmented Lagrangian formulation for stress-constrained
mass minimization has been studied in multiple recent
works targeting 3D large scale optimization (da Silva
et al. 2020; Senhora et al. 2020). We also performed a
number of tests using different solution strategies for mass
minimization. The optimized layout and stress distribution
of the L-shape beam are shown in Fig. 15, while the
statistics are reported in Table 4. In this example, ADMM
achieves a slightly smaller volume fraction. However we
note that this involves empirically selecting parameters, and
the same set of parameters does not necessarily lead to
consistent advantages in other examples. The objective of
augmented Lagrangian formulation is written as

Lμ(ρ, α, λ) = κρTv + λT(α − σ̃ ) + μ

2
‖α − σ̃‖22. (40)

It consists of three terms, a scaled mass, the Lagrangian
term, and the penalty term. The scaling factor κ is

introduced to balance the three terms, following Senhora
et al. (2020). The best set of parameters that fits different
examples in the context of mass minimization remains to be
found. We leave this as important future work.

6 Conclusion

In this paper, we have presented an interpretation of local
stresses as optimization variables. The introduction of
auxiliary stress variables enlarges the optimization space. It
leads to an augmented Lagrangian formulation which can
be solved by the alternating direction method of multipliers.
Using simple truss examples, we have validated that the
augmented Lagrangian formulation allows reaching the
global optimum that is located in the degenerate sub-
space. Numerical results on continuum structures suggest
that the augmented Lagrangian formulation, solved using
different solution strategies, leads to compliance values that
are up to 9.1% smaller than that from the conventional
formulation. In particular, using ADMM for solving the
augmented Lagrangian formulation continued by MMA for
the conventional formulation is most favorable in terms of
both the objective and computation time.

The departure point of our approach is to introduce
a second set of optimization variables corresponding to
local (stress) constraints. We envision this is applicable
to other topology optimization problems with local con-
straints, such as the minimum feature scale (Zhou et al.
2015) and porosity (Wu et al. 2018). The computational
benefit for reformulating such problems is yet to be investi-
gated.

Appendix 1. Sensitivity analysis

The first term on the right-hand side in (38), ∂fc(ρ)
∂φe

, is the same as
in conventional density approaches (e.g., Wang et al. 2011), and thus
is left out here. The second and third terms involves ∂σ̃

∂φe
. Consider

element i. Using the chain rule, ∂σ̃i

∂φe
is calculated by

∂σ̃i

∂φe

=
∑
j∈Se

∂σ̃i

∂ρj

∂ρj

∂φ̃j

∂φ̃j

∂φe

. (A1.1)
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∂φ̃j

∂φe
and

∂ρj

∂φ̃j
are derived from (31) and (33), respectively,

∂φ̃j

∂φe

= ωj (xe, r)ve∑
i∈Sj

ωj (xi , r)vi

, (A1.2)

∂ρj

∂φ̃j

= β
1 − tanh2(β(η − φ̃j ))

tanh(βη) + tanh(β(1 − η))
. (A1.3)

With the definition of σ̃e given by (34), the derivative ∂σ̃i

∂ρj
has two

cases,

∂σ̃i

∂ρj

=

⎧⎪⎪⎨
⎪⎪⎩

ρ
q
i

( ∂σ̄i

∂σi

)T ∂σi

∂ρj

, i �= j ;

qρ
q−1
i σ̄i + ρ

q
i

( ∂σ̄i

∂σi

)T ∂σi

∂ρj

, i = j .
(A1.4)

Derivative of the vonMises stress w.r.t. the stress
components

The von Mises stress σ̄i is computed from the Voigt notation of stress
tensor σi = [σi,x , σi,y , τi,xy ]T by (35) and (36). Thus, the derivative
of the von Mises stress with respect to its stress components is

∂σ̄i

∂σi

= [ ∂σ̄i

∂σi,x

,
∂σ̄i

∂σi,y

,
∂σ̄i

∂τi,xy

]T, (A1.5)

where

∂σ̄i

∂σix

= 1

2σ̄i

(2σix − σiy),

∂σ̄i

∂σiy

= 1

2σ̄i

(2σiy − σix),

∂σ̄i

∂τixy

= 3τixy

σ̄i

.

Derivative of the stress components w.r.t.
the density

From the stress form, (37), the derivative of stress is given by

∂σi

∂ρj

= D0Bc

∂ui

∂ρj

. (A1.6)

It requires the derivative of the displacement field regarding the
density. This is obtained by differentiating (6),

∂K

∂ρj

U + K
∂U

∂ρj

= ∂F

∂ρj

. (A1.7)

Since the load vector F is assumed to be constant, the above
equation leads to

∂U

∂ρj

= −K−1 ∂K

∂ρj

U, (A1.8)

where ∂K
∂ρj

is derived from the function of K in (7). By substituting

(A1.8) into (A1.6), we get

∂σi

∂ρj

= −D0Bc(K
−1 ∂K

∂ρj

U)i , (A1.9)

where the subscript ()i indicates extracting the entries that correspond
to the degrees of freedom of element i.

Adjoint method

The adjoint method is used to avoid solving (A1.9) for each combina-
tion of i and j . The last two terms on the right in (38), −(λT ∂σ̃

∂φe
+

μ(α − σ)T ∂σ̃
∂φe

), expands as,

(λ + μ(α − σ))T ∂σ̃

∂φe

=
N∑

i=1

(λi + μ(αi − σi))
∂σ̃i

∂φe

(A1.10)

=
N∑

i=1

(λi + μ(αi − σi))
( ∑

j∈Se

∂σ̃i

∂ρj

∂ρj

∂φ̃j

∂φ̃j

∂φe

)

=
∑
j∈Se

( N∑
i=1

(λi + μ(αi − σi))
∂σ̃i

∂ρj

) ∂ρj

∂φ̃j

∂φ̃j

∂φe

. (A1.11)

Let Θj denote
∑N

i=1(λi + μ(αi − σi))
∂σ̃i

∂ρj
. Substituting (A1.6) in

(A1.4) and then (A1.4) in Θj , we obtain

Θj =
N∑

i=1

(λi + μ(αi − σ̃i ))ρ
q
i

( ∂σ̄i

∂σi

)T
D0Bc

∂ui

∂ρj

(A1.12)

+(λj + μ(αj − σ̃j ))qρ
q−1
j σ̄j , (A1.13)

with ∂ui

∂ρj
= (−K−1 ∂K

∂ρj
U)i . Introducing an adjoint vector δ and

solving

Kδ = − N

A
i=1

(λi + μ(αi − σ̃i ))ρ
q
i BT

c DT
0

( ∂σ̄i

∂σi

)
, (A1.14)

where A indicates matrix assembly, (A1.13) is calculated by

Θj = δT
j

∂Kj

∂ρj

uj + (λj + μ(αj − σ̃j ))qρ
q−1
j σ̄j , (A1.15)

where vector δj extracts entries in the adjoint vector δ that correspond
to degrees of freedom of element j .

Appendix 2. Solving the conventional
formulation

Maximum stress approximation In ADMM the stress constraint
is an upper bound on the optimization variable α. This renders
commonly used aggregation schemes unnecessary. However, in the
second part of the hybrid approach, aggregation schemes are needed
for the MMA solver.

The stress constraint (4) is equivalent to

max(α) ≤ σlim, (A2.1)

where α = (α1, α2, · · · , αn), with n being the number of elements.
αe = σ̃e, ∀e. It is calculated by (34). We use the p-norm to
approximate the maximum function, i.e.,

αPN =
(

N∑
i=1

α
p
i

) 1
p

. (A2.2)

The p-norm approaches the maximum as the positive p increases.
p = 8 is used in our examples. It has been shown that a scaling
based on the approximation quality in previous iterations improves the
approximation accuracy (Le et al. 2010). This is implemented here as

max(α) ≈ c[i] · α
[i]
PN (A2.3)
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Fig. 16 In each example, from left to right: illustration of the design domain and boundary conditions, the optimized material distribution without
stress constraints, and the corresponding stress distribution

The scaling factor c[i] accounts for the discrepancy between the actual
maximum αmax and approximated maximum αPN in previous iterations,

c[i] = ξ
α

[i]
max

α
[i]
PN

+ (1 − ξ)c[i−1], i ≥ 1, (A2.4)

where the weighting factor ξ = 0.5 is chosen and the scaling factor is
initialized with c[0] = 1.

Sensitivity analysis The derivative of the maximum stress regard-
ing to φe is stated below:

∂ max(α)

∂φe

≈ ∂c · αPN

∂φe

= c
∑
j∈Se

∂αPN

∂ρj

∂ρj

∂φ̃j

∂φ̃j

∂φe

. (A2.5)

where
∂ρj

∂φ̃j
and

∂φ̃j

∂φe
are given in (A1.3) and (A1.2), respectively. We

use the chain rule to calculate ∂αPN

∂ρj
:

∂αPN

∂ρj

=
N∑

k=1

∂αPN

∂αk

∂αk

∂ρj

, (A2.6)

with ∂αPN

∂αk
= (

∑N
i=1 αi

p)
1
p

−1
αk

p−1, and ∂αk

∂ρj
, i.e., ∂σ̃k

∂ρj
, is given in

(A1.4).

Appendix 3. More examples

The design domain and boundary conditions of six more tests are
illustrated in Fig. 16 on the left of each example. The three C-shaped
structures share the same design domain but with different boundary
conditions. The concentrated forces are applied over a short span
of 4 elements horizontally. Fixations are applied either to the entire
boundary edge or ten elements. In (d) and (f), a distributed force
with a sum of F = 5 is applied on the top edge. Figure16, on the
right of each example, shows the stress distribution in the structural
layout optimized without stress constraints. The stress limits used
in stress-constrained compliance minimization are 0.4, 0.4, 0.4, 0.4,
2.5, 2, respectively. The results of different solution strategies are
summarized in Table 5, while the optimized structures are shown in
Figs. 17, 18, 19, 20, 21 and 22.

Table 5 Statistics for optimizing six different structures/boundary conditions

factor MMA (Q0) GCMMA (Q0) GCMMA (Q0)
+ MMA (Q0)

MMA (Q1) ADMM (Q1) ADMM (Q1)+
MMA (Q0)

C1 fc 291.48 316.33 285.35 283.09 278.01 285.65

V 0.29999 0.29984 0.29999 0.29997 0.29987 0.29950

max(σ̃ ) 0.39999 0.39852 0.39999 0.39997 0.39933 0.39939

#Time(s) 2170.8 4631.8 2520.8 3032.2 3425.5 1856.2
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Table 5 (continued)

factor MMA (Q0) GCMMA (Q0) GCMMA (Q0)
+ MMA (Q0)

MMA (Q1) ADMM (Q1) ADMM (Q1)+
MMA (Q0)

#Iter 546 609 20+442 478 516 20+402

#Solves 1092 2948 1004 956 1700 924

C2 fc 367.70 361.10 377.75 372.16 359.53 362.63

V 0.29998 0.29996 0.29995 0.29996 0.29928 0.29972

max(σ̃ ) 0.39978 0.39923 0.39861 0.39987 0.39999 0.39411

#Time(s) 2743.4 4324.0 2676.5 3925.1 3602.1 2353.9

#Iter 665 508 20+419 626 595 20+494

#Solves 1330 2044 838 1252 1787 1108

C3 fc 196.12 189.50 185.93 192.08 178.24 184.67

V 0.29999 0.30000 0.29999 0.29999 0.29996 0.29998973

max(σ̃ ) 0.39997 0.39988 0.39992 0.39991 0.4000 0.39999

#Time(s) 1870.1 5135.7 2349.5 2325.1 2406.3 1849.2

#Iter 511 267 20+352 586 382 20+530

#Solves 1022 1889 864 1172 1202 1140

O fc 226.25 221.21 227.41 227.06 226.67 227.10

V 0.29999 0.29998 0.29989 0.29994 0.29671 0.29999

max(σ̃ ) 0.39996 0.39999 0.40000 0.39995 0.39551 0.39986

#Time(s) 2234.0 4269.9 2194.3 1610.6 3631.4 1902.8

#Iter 549 864 20+426 432 667 20+512

#Solves 1098 2837 952 864 1969 1124

P fc 6415.10 6333.07 6881.54 6314.01 6369.14 6345.59

V 0.30000 0.29996 0.29999 0.29999 0.29997 0.29997

max(σ̃ ) 2.4995 2.5086 2.4999 2.4995 2.5000 2.5000

#Time(s) 3614.7 3820.6 3972.9 3262.4 3022.2 3158.6

#Iter 960 631 20+862 856 552 20+846

#Solves 1920 2536 3569 1712 2210 1812

S fc 3789.09 3938.82 3936.29 3794.54 3695.45 3724.45

V 0.29998 0.29989 0.29996 0.29999 0.29999 0.29996

max(σ̃ ) 1.9999 2.0000 1.9998 1.9995 1.9994 1.9997

#Time(s) 1645.5 3792.1 1986.9 3492.2 2992.6 1846.5

#Iter 517 588 20+347 836 537 20+511

#Solves 1034 2617 814 1672 1635 1153

Fig. 17 Optimized structural layouts and stress distributions in the C-shaped structure 1 using different solution strategies
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Fig. 18 Optimized structural layouts and stress distributions in the C-shaped structure 2 using different solution strategies

Fig. 19 Optimized structural layouts and stress distributions in the C-shaped structure 3 using different solution strategies

Fig. 20 Optimized structural layouts and stress distributions in the O-shaped structure using different solution strategies
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Fig. 21 Optimized structural layouts and stress distributions in the P-shaped structure using different solution strategies

Fig. 22 Optimized structural layouts and stress distributions in the S-shaped structure using different solution strategies
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