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a b s t r a c t

Porous structures are widely used in our daily life due to their special properties such as higher rigidity
and lightweight. With the popularity of additive manufacturing (AM), producing porous structures
by AM shows great advantages over traditional manufacturing technologies. In this paper, we first
introduce a framework to model a type of porous structures which contain lots of small holes. Then we
propose an efficient path planning algorithm for this type of porous structures. The algorithm consists
of the following steps: for each slice of a porous structure, we first subdivide the domain of the slice
into subdomains by generalized Voronoi diagram such that each subdomain contains exactly one hole,
and then we carry out dual operation to obtain a partition of the domain into a set of subregions. A
route is then found to traverse every subregion by solving a traveling salesman problem (TSP) using
genetic algorithm (GA), and along the route subregions are merged into larger ones to improve printing
efficiency. Finally we fill each merged subregion with a single Fermat spiral curve and further optimize
smoothness and uniformity of the filling path. We demonstrated a variety of testing examples and the
experimental results showed the superiority and effectiveness of our method in terms of material cost,
printing time and structure stability.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Porous structures are common in nature, such as bones, cork,
bee hives, corals. Because of their good properties such as lower
relative density, higher strength, lightweight, sound insulation
and heat insulation, they can improve mechanical properties,
such as strength and stiffness, while reducing density. Porous
structures are extensively used in aerospace industry, biomed-
icine, building constructions and so on. Biological scaffolds are
typical medical porous structures which can assist patients recu-
perate their health. Porous structures are excellent buffer struc-
tures which can be used for aircraft cushions.

However, manufacturing porous structures is a challenging
problem by traditional techniques such as chemical process and
subtractive manufacturing which essentially uses a cutting tool to
cut materials along a given path. The emerging additive manufac-
turing (AM) or 3D printing provides a good alternative. Additive
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manufacturing converts a 3D model into 2D slices and then builds
up the whole model layer by layer. Thus it is particularly suit-
able for complex models which contain lots of structures inside.
The key problem for manufacturing porous structures using 3D
printing is to design a reasonable printing path for each layer.

Currently, there are several popular path planning methods.
Zigzag and contour-parallel path planning methods are the two
most popular methods in AM with their own pros and cons
respectively. Zigzag paths (Fig. 1(a)) are simple to implement, but
they are often discontinuous and have serrated boundaries which
affect printing accuracy. Contour-parallel paths (Fig. 1(b)) can
effectively guarantee geometric accuracy of boundaries, but they
often create lots of small fragments. Maze patterns (Fig. 1(c)) can
also be used as filling paths but it is a complicated task to design
a maze pattern for an arbitrary boundary. Space filling paths
such as Hilbert filling paths (Fig. 1(d)) and spiral filling paths
(Fig. 1(e) and Fig. 1(f)) can achieve global continuity but have low
computational efficiency. Despite many efforts that have been
contributed for path generation, for complex geometries such as
porous structures, it is still a difficult task to design a high-quality
printing path. The goal of the current paper is to propose an
effective path-planning algorithm for porous structures.

The main contributions of this paper are as follows:

• An implicit representation is proposed to model a type of
porous structures which contain lots of small holes.
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Fig. 1. Various filling paths.

• A novel path generation algorithm is developed for such
type of porous structures by solving a traveling salesman
problem.

• A variety of testing examples are presented to demonstrate
the superiority and effectiveness of our method in terms of
material cost, printing time and structure stability.

The structure of this paper is organized as follows. In Section 2,
we review some related work about path planning and porous
structures. In Section 3, we propose an implicit representation
for a type of porous structures which contain lots of small holes.
In Section 4, we describe a new path generation algorithm for
the porous structures described above. In Section 5, experimental
results are demonstrated and comparisons are made between
various methods on several factors such as algorithm efficiency,
time and material cost, path continuity, sharp turns, fill rates,
physical property and visual effects, where material cost and
printing time are the most important factors. We conclude the
paper with a summary and some future work in Section 6.

2. Related work

2.1. Path planning

Path planning is an essential step in additive manufacturing. A
path planning method should seek good performance in the fol-
lowing aspects. Firstly, the path needs to be globally continuous.
Printing material will be pumped back in discontinuous sections
if path is not globally continuous. The nozzle of the printer could
suffer from the process of lifting, rapid positioning and falling,
which increases the printing time and affects the overall printing
quality. Secondly, sharp turns should be avoided as much as
possible. Sharp turns would slow down the nozzle causing time
wastage and create tiniest interspace. Thirdly, the path should
be as uniform as possible. Over-fills increase material cost and
under-fills affect printing quality. Other factors include time and
material consumption, etc. These factors should be as small as
possible under a certain filling rate. In the following, we review
some related works on path planning.

Zigzag paths It is the most typical path planning method used
in AM. Zigzag paths consist of line segments which are parallel
to one direction. This method has been applied in commercial
printers because of high computational efficiency. The research
mainly focuses on how to determine the optimal inclination
degree. Park et al. [1] found the optimal inclination by considering
the shape of the printing area as well as the path interval. Rajan
et al. [2] provided a method for efficiently computing an optimal
inclination degree. They minimized the number of scan line seg-
ments when the region was bounded by straight line segments
and/or circular arcs. Kim [3] applied an intersection point graph
to generate a path, and then modified it to maintain a constant
material removal rate to achieve a constant cutting force and
avoid chatter vibration. Jin et al. [4] proposed a direction-parallel
path planning method with full consideration of specific technical
characteristics in fused deposition modeling (FDM). Zigzag paths

have high computation efficiency, but they produce many sharp
turns and staircase effects which influence the printing quality.

Contour-parallel paths Contour-parallel paths are comprised of a
series of contours which are offsets to the input boundaries. Such
paths not only possess geometric precision but also avoid the
staircase effects. Farouki et al. [5] constructed equidistant offset
curves based on rational representations of model boundaries. It
significantly enhances the accuracy and speed of offset compu-
tations. Yang et al. [6] introduced an efficient equidistant path
generation method which consists of three steps: domain parti-
tion, offset generation and intersection processing. This method
can bring significant improvements to printing process both in
processing efficiency and printing quality. Abdullah et al. [7]
proposed a contour-parallel path generation method based on
an ant colony optimization technique to generate a clear tool
path that removes the entire uncut region in contour parallel
machining at minimum cutting time. One major disadvantage of
contour-parallel methods is that they may produce lots of small
uncut regions and inflection points which create under-fills and
increases printing time.

Space-filling paths There are many kinds of space-filling paths,
such as Pinao curves, Hilbert curves and spiral curves. S.H. Nair
et al. [8] presented a systematic strategy to produce uniform
or non-uniform Hilbert’s space-filling curves in the space with
obstacles (or holes). The Hilbert curve is not suitable for additive
manufacturing due to too many inflection points. C. Fleming
et al. [9] designed a post-processing greedy algorithm to reorder
path instructions in order to reduce the distance traveled be-
tween subsequent space-filling curves and layers. Held et al. [10]
generated a spiral curve for a domain without islands by interpo-
lating growing disks placed on the medial axis of the boundary.
They further extended their method to multiply-connected do-
mains [11] by decomposing an arbitrarily complex domain into
simpler ones and filling each subregion with one distorted spiral
curve. However, such paths cannot be used for additive manu-
facturing directly due to uneven intervals. Zhao et al. [12] made
further improvements over the above algorithm. They decom-
posed a domain into a set of subregions according to positions of
offset curves. Each subregion was filled with a single continuous
Fermat spiral curve by rerouting and connecting, and finally a
global continuous path could be obtained. However, the method
requires that start and exit points should locate at approximately
the same location, and rate of under-fills by the method could
be high. In summary, space-filling paths are effective to avoid
self-intersection and make the whole path continuous. However,
it may take a long time to generate filling paths for complex
geometries.

Hybrid-filling paths In some situations, a single method cannot
produce satisfactory filling paths, but the combination of different
algorithms can achieve better results. Jin et al. [13] proposed
a method that generates contour-parallel paths to improve the
geometrical quality and zigzag paths for the internal area of the
model to simplify computation and fabrication processes. Ding et
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al. [14] decomposed 2D geometries into a set of convex polygons,
and for each convex polygon, an optimal inclination is determined
and a continuous path is generated by using a combination of
zigzag and contour-parallel paths. The final path is formed by
connecting all the sub-paths. Ozbolat et al. [15] introduced an al-
gorithm that generates a bilayer pattern of zigzag and spiral paths
for porous structures with internal features. This is a practical
method to print functionally graded materials.

2.2. Porous structures

Porous structures have directional or random holes like foam,
lotus, honeycomb. They have the characteristics of small propor-
tion, rigidity, vibration absorption and so on. There have been
several attempts on how to generate porous models. Lu et al. [16]
introduced a honeycomb-cells structure by a hollowing optimiza-
tion algorithm to reduce the material cost and weight of a given
object. Wu et al. [17] presented a method to generate bone-
like porous structures based on structural optimization to obtain
maximum stiffness and lightweight. Ying et al. [18] proposed
an algorithm for modeling anisotropic porous structures based
on anisotropic centroidal Voronoi tessellations which have better
adaption with the stress tensor field.

3. Porous structures represented by implicit functions

In Computer Aided Design, NURBS is a standard tool to rep-
resent geometric objects. However, it is a very difficult task for
NURBSs to model complicated geometry and topology such as
porous structures. Polygonal models are another common rep-
resentation in geometric modeling. Yet it would take a huge
number of faces to model a porous structure with acceptable
accuracy. Furthermore, parametric and polygonal representations
have disadvantages in 3D printing applications. To convert a 3D
parametric or polygonal model into 2D slices, geometrical and
topological errors often occur, which would result in incorrect
printing or even failure. In contrast, implicit representation is well
suited to model complicated geometry with arbitrary topology
and inner structures [19], and it is more efficient and robust to
convert a 3D implicit representation into 2D slices [20]. In this
section, we propose an implicit representation to model a type of
porous structures which contain lots of small holes inside.

Firstly, we represent the boundary of a porous structure by a
trivariate spline function of tri-degree (d1, d2, d3):

fb(x, y, z) =

m∑
i=0

n∑
j=0

l∑
k=0

cijkNi(x)Nj(y)Nk(z) = 0, (1)

where {cijk}
m,n,l
i,j,k=0 are the control coefficients, Ni(x), Nj(y), Nk(z) are

the B-spline basis functions along x, y, and z directions of degrees
d1, d2, d3, respectively. In practice, we usually choose d1 = d2 =

d3 = 3.
Next, we represent the inner holes using blobby models [21].

Let P = {p1, p2, . . . , pN} be a set of seed points in the interior
of a model M , where pi = (xi, yi, zi), i = 1, 2, . . . ,N . Define a
potential function for each point pi:

fi(x, y, z) =
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where

d2i = ∥q − pi∥2
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a2i
+
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(z − zi)2

c2i
,

Fig. 2. The iso-surfaces for different values of κ .

ri > 0 is the radius with respect to the point pi, di is the scaled
distance from one point q to the point pi, and ai, bi, ci > 0 are
scaling factors along three coordinate directions. When ai = bi =

ci = 1, di is the usual Euclidean distance. Now the blobby model
generated by the point set P is defined as

fin(x, y, z) :=

N∑
i=1

fi(x, y, z) − κ = 0, (3)

where κ is a constant. For different choices of κ , one obtains
different blobby models. Fig. 2 illustrates the iso-surfaces with
four seed points for five different values of κ .

Now the porous structure is defined by the following implicit
function

f (x) = max(fb, −fin) (4)

which represents the Boolean operation of two implicit geome-
tries defined by fb = 0 and fin = 0.

For a given model M , one can convert the representation of
the boundary surface of M into trivariate splines using tech-
niques in [22]. The inner porous structures are determined by
the locations and radii of the seed points. For our demonstration
purpose, we randomly generate the seed points P by Lloyd′s
relaxation method [23]. To determine the radius ri of the point pi,
we compute the Voronoi diagram of the seed points and calculate
the shortest distance hi from pi to the inner wall of the Voronoi
cell(a polyhedron), and set ri = ei ∗ hi, where ei is a random
number in (0, 1). ai, bi, ci are also random numbers between 0.5
and 1.5 to generate ellipsoid shapes. The inner structure is thus
defined by (3) (Fig. 3(e)).

Remark 3.1. In this section, we propose a general framework
to model a type of structures using implicit representations. The
inner structure is determined by the locations and radii of the
seeds. We randomly generate the locations and radii of the seeds
solely for demonstrating the path-planning algorithm presented
in the next section. In practice, the locations and radii of the seeds
can be obtained by shape and topological optimization technique,
which is a widely investigated and on-going research area [24].
How to optimize the seeds is a very important research topic and
is far beyond the scope of the current work.

4. Path generation

In this section, a new path planning algorithm is proposed for
printing porous models constructed in Section 3. As a first step,
we need to generate a series of 2D slices of a porous structure. For
implicit representation, this can be done efficiently by utilizing
the incremental method [20,25]. Fig. 4 shows partial results of
slicing a porous structure. It should be emphasized that the
algorithm presented in this section works for any representations
(parametric, polygonal and implicit) of the geometric model.

Now suppose a 2D slice (a domain) is generated. Our method
consists of the following steps:
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Fig. 3. The process of generating implicit representation of a porous structure. (a) Seed points distributed in a model. (b) Voronoi cells of seed points. (c) One cell.
(d) A blobby in a cell. (e) Inner holes represented by blobby models.

Fig. 4. Cross sections of a porous model.

1. Divide the domain into a set of subregions by generalized
Voronoi diagram [26] and dual operation;

2. Find a route to connect all the subregions by solving a
traveling salesman problem (TSP);

3. Merge subregions by maximum approximate ellipse prin-
ciple.

4. Fill each subregion with an optimal Fermat spiral curve and
optimize smoothness and uniformity of the path.

The overall process of our algorithm is shown in Fig. 5. In the
following, we will describe each step in detail.

4.1. Regional segmentation

Regional segmentation decomposes a topologically complex
domain into simpler ones. Let D be the domain of the given 2D
slice, and H1,H2, . . . ,Hr be the inner holes inside D. We first
subdivide the domain D into r subdomains D1,D2, . . . ,Dr such
that each subdomain Di encloses one hole Hi. Define

Di := {p ∈ D | d(p, ∂Hi) ≤ d(p, ∂Hj), j = 1, . . . , r, j ̸= i} (5)

that is, Di consists of those points whose distances to the bound-
ary of Hi are less than or equal to the distances to the boundaries
of other holes. {Di}

r
i=1 form a partition of the domain D, and we

call it Generalized Voronoi Diagram (GVD), and Di a cell of the
GVD.

To compute the GVD of D, we sample m points qj (j =

1, 2, . . . ,m) inside D and compute the distance d(qj, ∂Hi) of qj
to the boundary of the hole Hi. If d(qj, ∂Hi) ≤ d(qj, ∂Hi′ ) for
i′ = 1, 2, . . . , r , i′ ̸= i, then qj ∈ Di. Hence the problem converts
into distance computation of a point to the boundary of a hole
which is represented by an implicit function.

Let qj = (xj, yj) and assume the boundary of the hole Hi is
represented by gi(x, y) = 0. Then the foot point (x, y) of qj on ∂Hi
can be computed by solving

gi(x, y) = 0, gix(x, y)(y − yj) − giy(x, y)(x − xj) = 0.

Newton–Raphson’s method can applied to solve the equations ef-
ficiently. After the foot point is calculated, the distance d(qj, ∂Hi)
is thus obtained.

To speedup computation, we use bounding box technique to
eliminate many distance calculation. Let Bi be the bounding box
(or circle) of the inner hole Hi, i = 1, 2, . . . , r , and denote L1ij and
L2ij to be the shortest and longest distances between qj and ∂Bi

respectively. Assume that L2i0j = mini L2ij. Then for any i such that
L2i0j < L1ij, we have d(qj, ∂Hi0 ) < d(qj, ∂Hi), and hence we do not
have to compute d(qj, ∂Hi) for such i. The details of computing
GVD are shown in Algorithm 1.

Algorithm 1 Algorithm for computing generalized Voronoi
diagram
Input: A 2D domain D which contains the inner holes {Hi}

r
i=1.

Output: Generalized Voronoi diagram of the domain D.
1: Uniformly sample m points qj (j = 1, 2, . . . ,m) inside D.
2: for i = 1 to r do
3: Compute the bounding box(circle) Bi of the inner hole Hi.
4: end for
5: for j = 1 to m do
6: for i = 1 to r do
7: Calculate the shortest and longest distances L1ij and L2ij

between qj and ∂Bi.
8: end for
9: Let L2i0j = mini L2ij, and set dj = d(qj, ∂H1) and i′ = 1.

10: for i = 2 to r do
11: if L1ij ≤ L2i0j then
12: Calculate the distance d(qj, ∂Hi).
13: if dj > d(qj, ∂Hi) then
14: Set qj = d(qj, ∂Hi) and i′ = i.
15: end if
16: end if
17: end for
18: Set qj ∈ Di′ .
19: end for

Fig. 6(b) shows the GVD of a domain D. From the GVD, it is
easy to derive the adjacency information of the holes in D. For
each pair of adjacent holes, we find a shortest line to connect
the two holes. The domain D is thus subdivided into a set of
subregions {Ri}

k
i=1 whose boundaries are formed by alternatively

connecting the line segments and parts of the hole boundaries.
Fig. 6(c) shows the decomposition result of the domain D. Notice
that each subregion is now a simply connected domain.

4.2. Regional traversal

Let us now discuss how to traverse the subregions {Ri}
k
i=1 of

a domain D such that a continuous path can be found to fill
each subregion sequentially. We first transfer the decomposition
of D = ∪

k
i=1Ri into a directed graph G = (V , E), where each

subregion Ri is represented by a vertex vi ∈ V , and for each pair
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Fig. 5. Procedure for the path planning of porous structures. (a) Input 2D slice. (b) Decompose the 2D slice into subdomains. (c) Carry out dual segmentation of (b).
(d) Traverse and merge subregions. (e) Fill and optimize subregions with Fermat spirals.

Fig. 6. Regional segmentation and traversal. (a) Input domain D. (b) GVD of D. (c) D is decomposed into subregions. (d) Number each subregion. (e) A graph
representation of the decomposition.

Fig. 7. Definition of angle between two subregions and merging process.

of adjacent subregions Ri and Rj, it corresponds to two directional
edges eij, eji ∈ E. Fig. 6(e) shows the representative graph of the
domain D. Now the problem reduces to find a route in the graph
G that traverses all the vertices exactly once, and this is the so-
called Hamilton path of G. Theoretically, any Hamilton path of
G gives a solution to our problem. However, the filling path by
such solution is composed of lots of small spiral curves, which
influences the printing efficiency. Our idea is to merge small
subregions into larger ones as much as possible, and then print
each larger subregion sequentially. Specifically, without loss of
generality, let v1v2 . . . vk be a Hamilton path of G and R1R2 . . . Rk
be the corresponding subregions, we merge consecutive subre-
gions Rij . . . Rij+1−1 into a larger subregion R′

j , j = 1, 2, . . . , k′,
where i1 = 1 and ik′+1 = k + 1. Thus the domain D is composed
of larger subregions: D = ∪

k′
j=1R

′

j . Fill each subregion R′

j with a
Fermat spiral curve, we can arrive at a final printing path.

Now the problem reduces to find a Hamilton path in G such
that the merging process can produce larger subregions R′

j as
much as possible. For that purpose, we first give a definition.

Definition 4.1. Let Ri and Rj be two neighboring subregions with
ci and cj being their centers respectively. Let C be the common
boundary of Ri and Rj and cij be the middle point of C . Then we
define the angle between Ri and Rj to be ̸ cicijcj. See Fig. 7 for a
reference.

Two subregions are likely to be merged if the angle between
the two subregions is not too far from π . Now we associate each
edge eij ∈ E of the graph G with a weight wij = 1/(sin(θij/2))4,
where θij (0 < θij ≤ π ) is the angle between the two subregions Ri

and Rj. Thus G becomes a weighted directed graph, and obviously
wij = wji. Our goal is to find a Hamilton path in G with minimal
total weights. This leads to the following optimization problem:

argmin f (x) =

∑
(i,j)∈Γ

wijxij (6)

s.t.
∑
j∈N(i)

xij = 1, i = 1, 2, . . . , k, i ̸= k1 (7)∑
i∈N(j)

xij = 1, j = 1, 2, . . . , k, j ̸= k0 (8)

where Γ = {(i, j) | eij ∈ E}, N(i) = {j | (i, j) ∈ Γ } is the index set
of vertices in the neighborhood of vertex vi, and

xij =

{
1, eij is on a Hamilton path
0, eij is not on a Hamilton path

k0 is the index of starting vertex and k1 is the index of ending
vertex. The objective function f (x) is the sum of the weights on
a Hamilton path, and the constraints (7) and (8) ensure that at
each vertex in the path (except the start and end vertices) there
is only one incident edge and one out edge. In addition, there is
a limitation that sub-loop cannot be present in the final path.

The optimization problem is the same as traveling salesman
problem (TSP), and it is NP-hard to solve. In this paper, we adopt
genetic algorithm (GA) to solve this problem. Genetic Algorithm
mimics the process of natural selection in the biological world
to generate high-quality solutions to optimization problems. In a
genetic algorithm, a population of candidate solutions (individu-
als) to an optimization problem is evolved toward better solutions
through three operations on the chromosomes of individuals,
namely, selection Os, crossover Oc and mutation Om. Applying
the genetic algorithm in our problem, we start with a randomly
constructed set of paths X0 that connect all the vertices in G. A
new set of paths X1 is then generated through the three opera-
tions on the set of paths X0–selection, crossover and mutation.
Iteratively improve the set of paths X t by evaluating the fitness
function to make the total weights become smaller until no more
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improvements are possible. In the following, we explain the three
operations in detail.

Parameter selection The performance of GA is affected by sev-
eral factors, such as the size of the initial population M0, the
selection’s strategy Os, the mutation operator Om, the crossover
operator Oc and the coding scheme. In this paper, we make
the following selection: population size M0 = 100, the rate of
selection Qr = 0.25, the rate of mutation Qm = 0.2, the rate of
crossover Qc = 0.35 and maximum evolutionary number N =

500, and integer chromosomes encoding is adopted.

Fitness function Fitness function is a measure to determine if an
individual will be inherited into next generation or not, and it has
great influence on GA. Here we take the reciprocal of the objective
function (9) as the fitness function:

F (xt ) = (f (xt ))−1, (9)

where xt is an individual at the tth iteration. At each iteration, we
try to maximize the fitness of each individual xt .

Selection operation Optimal preservation strategy is adopted
here. We first calculate the fitness values of all the individuals
in the current population X t

= {xt1, x
t
2, . . . , x

t
Mt

}, where xti is an
individual at time t , and Mt is the number of individuals in X t .
The individual with the highest fitness does not participate in the
crossover operation and mutation operation in later stages, and
it will be inherited into next generation directly. Other individ-
uals will be inherited into next generation according to certain
probability:

P(xtl ) :=
F (xtl )∑Mt
i=1 F (x

t
i )

, l = 1, 2, . . . ,Mt . (10)

If P(xtl ) > Qr , then the individual xtl will be inherited; oth-
erwise, it will be not. Optimum maintaining genetic algorithm
can improve the global convergence of GA. Rudolph [27] proved
theoretically that the standard genetic algorithm with optimum
preservation is globally convergent.

Crossover operation This operation aims to simulate the ex-
change of genes which are particular positions or locus in a
chromosome when organisms reproduce. Crossover is the main
phase of GA that generates new individuals and it determines
the global search ability of GA. The main process of crossover
operation is as follows. We first randomly select two parental
individuals x1 and x2 (or chromosomes—a Hamilton path in our
problem) in the current generation, and generate a random num-
ber pc in the interval [0, 1] with uniform probability. If pc >

Qc , no crossover occurs. Otherwise, the crossover operator is
applied. In this paper, we choose two-point crossover opera-
tor. Two crossover points with a fixed length between the two
points are selected in each parental chromosome (x1 or x2). The
gene between two the crossover points is defined as the gene
fragment—a part of a path in our problem. We establish a one-
to-one correspondence between the two gene fragments of the
two parental chromosomes x1 and x2. The child chromosomes are
constructed by interchanging the gene fragments of x1 and x2,
and replacing the genes outside of the gene fragments one by one
according to the corresponding relations on the gene fragments.

Mutation operation This operator acts on an individual chromo-
some and randomly flips one or several genes of the chromosome.
It not only determines the local search capability of GA but
also effectively prevents local convergence. The procedure is as
follows. A random number pm in the interval [0, 1] is generated
with uniform probability. If pm > Qm, no mutation is applied.
Otherwise, we randomly select two genes on the chromosome
and swap them.

These three operations are carried out repeatedly until the
difference of the selection probabilities between two adjacent
generations is less than threshold τ or the number of iterations
reaches a specific number N . The outline of GA is shown in
Algorithm 2. An example is illustrated in Fig. 6(d), where the
traversal sequence obtained by the above algorithm is: 3 →

18 → 19 → 28 → 27 → 26 → 25 → 24 → 23 → 22 →

21 → 20 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 →

33 → 32 → 29 → 30 → 31 → 17 → 16 → 15 → 14 → 34 →

13 → 1 → 2.

Remark 4.1. In some situation, the graph G may do not have a
Hamilton path. In this case, we find a path that contains as many
number of vertices as possible. Then subregions whose corre-
sponding vertices are not in the path are merged into subregions
whose corresponding vertices are in the path.

Algorithm 2 Optimal path construction algorithm

Input: A graph G.
Output: An optimal Hamilton path of G.
1: Set the initial values of the parameters: M0 = 100, Qs = 0.25,

Qc = 0.35, Qm = 0.2, Qr = 0.05, N = 500, τ = 0.000005 and
t = 0.

2: Randomly generate M0 individuals as the initial population
X0

= {x01, x
0
2, · · · , x

0
M0

}. Calculate the fitness function values
F (x0i ) for each individual x0i in X0, 0 ≤ i ≤ M0.

3: while {(t ≤ N) and (P(X t+1) − P(X t ) > τ )} or (t = 0) do
4: Perform a selection operation Os.
5: for l = 1 to N do
6: if P(xtl ) > Qr then
7: Pass the individual xtl to the next generation.
8: end if
9: end for

10: Perform the crossover operation Oc and mutation operation
Om.

11: Update X t+1 and set t = t + 1.
12: end while

4.3. Regional consolidation

Small print areas tend to have a high proportion of sharp turns
and uneven filling. How to merge small subregions into larger
print-friendly regions will be taken into account in this subsec-
tion. By the regional traversal algorithm presented in the last sub-
section, we have obtained a sequence of subregions R1, R2, . . . , Rk
which comprise the whole domain D. Our goal is to merge them
into a new sequence of larger print-friendly regions R′

1, R
′

2, . . . ,
R′

k′ . We define a print-friendly region by the following charac-
teristics: (1) the region is as close to an ellipse as possible, and
the ratio of the lengths of the long axis and short axis is bounded
above by a constant; (2) the region is a simply connected domain;
(3) the boundary of the region is as smooth as possible. For a
given region R, we first find an ellipse E such that R and E are
as close as possible. Let

E(x, y) := e1x2 + e2xy + e3y2 + e4x + e5y + e6 = 0 (11)

be the implicit equation of the ellipse E, where 4e1e3−e22 = 1. We
sample a set of points Q = {q1, q2, . . . , qm} on the boundary of R
with qi = (xi, yi) and minimize the sum of the squared algebraic
distances of the point set Q to R:

min
m∑
i=1

E(xi, yi)2 (12)

s.t. 4e1e3 − e22 = 1
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Fig. 8. Regional consolidation. (a) Two neighboring subregions R1 and R2 . (b) Union of the two subregions R = R1 ∪ R2 . (c) Sampling points on R. (d) Elliptic fitting
and merging.

Fig. 9. Regional consolidation for an example. (a) Original segmentation; (b) and (c) regional consolidation; (d) close-up views; (e) final result.

Fig. 10. Filling a region with a single local minimum. (a) Original region; (b) Break and reroute the connection relationship; (c) Connect final junction points; (d)
The final result. (e)–(g) show that the method does not apply for regions with multiple local minima.

This is simply a quadratic programming problem with 6 vari-
ables e1, . . . , e6 and it can be easily solved.

After obtaining the ellipse R, we use one-sided Hausdorff
distance to measure the difference of a region R and the ellipse
E:

d(R, E) := max
x∈∂R

min
y∈∂E

d(x, y).

Two neighboring subregions R1 and R2 are merged into a
subregion R if

d(R, E) < bE and aE < 3bE (13)

where aE and bE are the lengths of the long half axis and the
short half axis of the ellipse E. Fig. 8 shows the process of re-
gional consolidation, while Fig. 9 illustrates the result of regional
consolidation for an example.

Remark 4.2. Before filling each subregion, the common boundary
of two neighboring subregions R′

i and R′

i+1 should be offset by half
of the printing width (as shown in Fig. 9(d)) to avoid overfills in
the boundary.

4.4. Fill one subregion

By previous step, we have obtained a sequence of merged sub-
regions R′

1, R
′

2, . . . , R
′

k′ . The problem now is to design a continuous
space filling path for a given simple region with arbitrary entry
and exit points. Fermat spirals are a good choice for this task.

Since the path planning is independent for each subregion, the
computation can be done in parallel. In the following, we solve
the problem by considering two situations, a region with a single
local minimum and multiple local minima. A region is said to have
a single local minimum if inside the region all the offset curves
of the boundary are simply connected close curves of one loop.
Otherwise, it is said to have multiple local minima.

4.4.1. Fill a region with a single local minimum
Given a region R with a single local minimum, the entry point

pin and exit point pout on the boundary of the region, we are going
to construct a continuous Fermat spiral to fill the region R. Here
are the main steps:

• Compute a series of offset curves C1, C2, . . . , Cl of the re-
gional boundary ∂R with equidistance d by Clipper’s algo-
rithm [28].

• Select a point pin−1 near pin on the boundary such that the
distance between the two points is d.

• Select a point p′

in on C1 such that |pinp′

in| = d.
• Connect the two points pin−1 and p′

in, and delete the line
segment pinpin−1.

• Conduct the same operations for the exit point pout , and
for all the other offset curves consecutively. Then we finally
obtain a continuous path filling the region R.

Fig. 10 illustrates the above procedure.
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Fig. 11. Filling a region with three local minima. (a) Determine the offset curve Cm . (b) Determine the connection points in the area S0 . (c) Fill the area S0 with a
continuous path by adding an extra offset curve segment. (d) Fill the rest part R\S0 with a continuous path. (e) Final result . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

4.4.2. Fill a region with multiple local minima
The method for filling a region with a single local minimum is

not suitable for regions with multiple local minima. As illustrated
in Fig. 10(e)∼(g), we apply this method to a region with two local
minima, where A is the entry point and D is the exit point. Instead
of obtaining a continuous path from A to D, the path ends at the
point B which is not reachable to D. In order to get a continuous
path from A to D, one has to add a curve segment from B to C . This
idea is feasible for general purpose. In the following, we present
an approach for filling a region with multiple local minima and
with arbitrary entry point and exit point. The basic approach is to
transfer the situation into the case where the region has a single
local minimum.

Let R be a region with K (K ≥ 2) local minima. We want to
construct a continuous path in the region with given entry and
exit points on the boundary of R. The main steps are summarized
as follows:

• Compute a series of offset curves C1, C2, . . . , Cl of the bound-
ary curve ∂R (starting from the boundary to the inside of
R).

• Find the first offset curve Cm where the topology of the
offset curve changes (the red curve shown in Fig. 11(a)),
and denote by S0 the area bounded by ∂R and Cm.

• Fill the area S0 with a continuous path. Firstly we apply
the method introduced in the last subsection to construct
a continuous path from the entry point pin to some point
pF2 on Cm, and similarly we construct a continuous path
from the exit point pout to some point pF1 on Cm (as shown
in Fig. 11(b)). Then we add an extra offset curve segment
Cm,m+1 between Cm and Cm+1 to connect pF1 and pF2 . To make
the offset curves more uniform, we assume that the offset
curve segment Cm,m+1 is the center curve of Cm and Cm+1,
and move the corresponding offset curve segments Ci along
the normal directions outwards by an amount ∆di =

i
md,

i = 1, 2, . . . ,m. Finally we move Cm,m+1 by an amount of
d/2 (as shown in Fig. 11(c)).

• Fill the rest part R\S0 of the region R besides S0 with a
continuous path. Here the entry point and exit point are two
adjacent points on Cm,m+1 which can be chosen close to pF1 .
Since the entry point and the exit point are adjacent, the
filling process can be recursively divided into filling areas
with a single local minimum (as shown in Fig. 11(d)).

• Connect the filling paths of the two areas S0 and R\S0.

After we obtained a global continuous filling path, we further
optimize the smoothness and uniformity of the path by a similar
method described in [29].

5. Experimental results

In this section, we present a variety of examples to test our
path planning algorithm, and comparisons with state-of-the-art

methods are also provided. Our experiments were conducted on
Ultimate 2+ using FDM (Fused Deposition Modeling) technology.
The printing material is PLA with a diameter of 2.85 mm. We
use default printer settings, with the nozzle diameter of 0.4 mm,
the layer thickness of 0.2 mm, and the maximal nozzle speed
of 80 mm per second. The algorithm is implemented in C++ and
measured on an Inter(R) CoreTM i7-4790 CPU 3.6 GHz with 8 GB
RAM.

The most common factors to evaluate the performance of a
path generation algorithm are computational time (ct), printing
time (pt), material cost (m), number of segments in the path (seg),
ratio of sharp turns (st), ratio of fills (over-fills (of ) and under-fills
(uf )) as well as visual effect, where material cost and printing
time are the most important factors. We make comparisons on
these factors between the four path-generation methods: zigzag
method (Z), contour-parallel method (C), connected Fermat spi-
rals method (CFS) [12] and our method (O). We use the algorithm
in this paper to test some examples (see Fig. 12).

5.1. Algorithm performance and printing time

The main computational cost of our path planning algorithm
lies in solving the traveling salesman problem by genetic algo-
rithm. Table 1 summarizes the computational costs (in seconds)
for four algorithms—zigzag, contour-parallel, connected Fermat
spirals and our method for ten examples. Zigzag algorithm takes
the shortest time because of its high computational efficiency,
followed by contour-parallel algorithm. Compared with these two
classical algorithms, our algorithm and CFS algorithm take more
time because more optimization is involved. But our algorithm
has a significant improvement over CFS algorithm—only accounts
for about 30% of the time of CFS algorithm.

Next we analyze the convergence of solving the TSP using
genetic algorithm. Fig. 13 shows the convergence plots for ten
examples, where the horizontal axis represents the number of
iterations, the vertical axis represents the reciprocal value of
fitness functions, and each curve indicates one example. From the
picture, we can see that the function values stabilize eventually
for all the examples as the number of iterations increases.

Printing time is an important factor in 3D printing since gen-
erally it takes dozens of hours to print a model. Columns 6–9 in
Table 1 show the actual printing time (in seconds) of one layer
for ten examples by the four algorithms. It can be seen that our
algorithm takes the least printing time for all the examples, and
compared with the other three methods, our method saves about
19%, 15% and 11% printing time on average, respectively.

5.2. Material cost

Porous structures are commonly used in the fields of aerospace
and biomedical science in which materials are very expensive.



226 X. Zhai and F. Chen / Computer-Aided Design 115 (2019) 218–230

Fig. 12. Experimental results with different filling rate and topological complexity that show the feasibility and robustness of our algorithm.

Fig. 13. The convergence of genetic algorithm. The horizontal axis represents
iteration steps, and the vertical axis represents reciprocal value of fitness
function.

Table 2
The relative material cost of the four methods for ten examples on average..
Methods Zigzag Contour CFS Ours

Relative material cost 2.21 1.18 1.12 1.00

In order to meet the requirements of lightweight and minimum
cost, it is very important to reduce the material cost. For the four
different path filling algorithms mentioned above, we report the
average material cost of ten examples for one layer under the
same filling rate in columns 10–13 of Table 1. Table 2 shows the
relative average material cost of the three methods compared
with our method for the ten examples. It can be seen that our
algorithm costs least amount of material, and compared with
zigzag algorithm, the material cost by our method is less than
half of that by the zigzag method. The reason might be that, a
large amount of materials are pumped back in the discontinuous
sections of zigzag paths and contour-parallel paths. Considering
that a model generally consists of hundreds or even thousands of
layers, the material saving of printing a model by our method is
noticeable.

Table 1
Comparison results of four algorithms under algorithm time (at), print time (pt) and length (l)..
Factors Computational time (s) Printing time (s) Material (mm)

Input Zct Cct CFSct Oct Zpt Cpt CFSpt Opt Zm Cm CFSm Om

sphere 0.021 0.496 18.096 4.158 804 783 756 692 2 692 1325 1243 1162
pear 0.020 0.565 18.769 5.115 565 544 524 473 1 827 686 646 628
duck 0.018 0.466 15.431 3.178 683 649 621 558 9 390 4725 4693 4492
kitten 0.053 0.861 20.156 5.291 587 545 492 412 5 537 2884 2781 2473
torus 0.022 0.520 18.887 3.461 628 606 589 537 2 572 1206 1193 1169
mrhumpty 0.013 0.431 15.381 4.869 821 796 789 722 12 009 5867 5893 5816
homer 0.041 1.056 22.469 8.305 864 837 796 753 7 746 4297 4184 4066
venus 0.063 1.534 64.564 26.087 562 574 558 542 11 231 5562 5613 5196
penguin 0.028 0.948 19.914 8.922 786 745 736 619 12 693 5842 5819 5623
monkey 0.019 0.731 15.850 4.604 829 847 802 725 7 592 4356 4595 3913
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Fig. 14. Compression test using MTS809.

Fig. 15. Physical test models.

5.3. Structural stability

We also tested the structural stability of five models (as shown
in Fig. 15) by the above mentioned four path generation meth-
ods, where the bridge model was obtained by the topological
optimization technique proposed in [30]. The test was performed
on an electromechanical universal testing machine (MTS809) to
physically evaluate the strength of the printed model at some
point or face as shown in Fig. 14. The crosshead of the ma-
chine is controlled to move at a constant speed of 1mm/min to
output constant compression force. We recorded the maximum
affordable stress for each model. Table 3 shows the weight, the
maximum stress and the ratio of the maximum stress over the
weight for each model. In each box of the Z’s columns, the two
numbers correspond to the maximum stresses in two special
printing directions by the zigzag method—the maximum number
is the stress of the direction that is parallel to the machine
movement direction, and the minimum number is the stress of
the direction that is perpendicular to the machine movement
direction.

From Table 3, we can see that the maximum stress for zigzag
algorithm varies greatly according to the printing direction, or the
direction how the force is applied, and the stress can be as low as

only 50%–70% of the stress by our method in the worst direction.
On the other hand, our method produces the largest stress among
the other three methods. Most noticeably, the load capacities of
per unit weight by our method are much larger than those by the
other methods.

5.4. Path continuity

Global continuity of the filling path reduces printing time and
material cost. CFS and our algorithms are globally continuous
while the other two algorithms produce filling paths consisting
of large number of segments as shown in columns 2–3 of Table 4.

5.5. Sharp turns

Near a sharp turn the print head will slow down at the apex
and then accelerate away from the apex. Uneven printing velocity
can cause time wasting and affect printing quality. Therefore, it
is necessary to reduce the ratio of sharp turns to ensure printing
accuracy and efficiency.

Let p1, p2, . . . , pn be uniform sampling points on a filling path.
A sharp turn is the point pi on the filling path where the turning
angle between pi−1pi and pipi+1 is less than some threshold δ. To
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Table 3
Stress-to-weight ratios of five models by the four path generation methods.
Models Letter C Letter A Letter D

Method Z C CFS O Z C CFS O Z C CFS O

Weight (g) 17.35 15.81 14.32 13.18 17.16 14.85 14.21 13.12 14.54 12.76 12.31 11.6819.23 15.28 13.17

Stress (N) 1433 1307 1294 1338 1749 1291 1235 1390 1327 912 931 11241108 1003 847

Ratio 82.59 82.67 90.36 101.52 101.92 86.94 86.91 105.95 91.27 71.47 75.63 96.2357.62 65.64 64.31

Models Homer Bridge structure

Method Z C CFS O Z C CFS O

Weight (g) 39.34 32.58 30.41 25.97 18.56 17.58 16.94 14.8736.23 15.94

Stress (N) 1840 1631 1693 1704 278 254 242 2681209 194

Ratio 46.77 50.06 55.67 65.61 14.98 14.45 14.28 18.0233.37 12.17

Table 4
Number of path segments (seg) and permillage of sharp turn (st)..
Input Zseg Cseg Zst Cst CFSst Ost

sphere 84 113 9.32% 4.51% 4.31% 4.08%
pear 53 107 8.24% 5.82% 5.54% 5.17%
duck 86 112 7.65% 4.19% 4.12% 3.75%
kitten 175 114 8.81% 5.89% 5.62% 5.03%
torus 158 86 7.29% 4.58% 4.13% 3.64%
mrhumpty 92 70 9.13% 5.27% 5.04% 4.87%
homer 126 98 9.82% 4.83% 4.97% 3.78%
venus 112 142 9.61% 4.15% 4.25% 4.09%
penguin 178 148 8.07% 4.62% 4.39% 4.46%
monkey 76 63 7.96% 3.73% 3.83% 3.12%

Fig. 16. Printing time vs. turning angles . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

determine the appropriate threshold value δ, we count the actual
printing time to print regular polygons with different sides. The
result is plotted in Fig. 16, where the horizontal axis represents
the inner angles of the regular polygons, and the vertical axis
represents the printing time. As we can see that the printing time
decreases as the angle increases. We fit the data with a cubic
polynomial f (θ ) (blue curve) and set f ′(θ ) = 0 to obtain the
threshold value δ ≈ 110◦.

For all the points on the filling path, we calculate the turning
angles and check if they are less than the threshold δ = 110◦.
If the angle is less than δ, then the point is regarded as a sharp
turn. Columns 4–7 in Table 4 list the sharp turn ratios for different
methods. Again our algorithm produces least number of sharp
turns except for one example.

5.6. Over-fills and under-fills

Over-fills and under-fills influence printing quality and in-
crease material wasting. In order to quantitatively calculate the
ratios of over-fills and under-fills, we think of a printing path as
a curve with a preset width (nozzle diameter). The path will in-
tersect at the over-fills areas and generate gaps at the under-fills
areas. Calculate the proportion of the intersection area and gaps
to obtain the ratios of over-fills and under-fills. The histograms in
Fig. 17(a) and (b) show the ratios of under-fills and over-fills for
the four algorithms on ten examples. It can be seen that the zigzag
fill pattern has the least ratio of under-fills, but its over-fills ratio
is the highest. Contour-parallel algorithm causes filling unevenly
due to small pieces produced in the offset computing. CFS fill
patterns tend to increase more gaps and under-fills. Our filling
algorithm produces the least over-fills among the four methods
and less under-fills than the CFS method and contour-parallel
method on average.

5.7. Visual effect

The visual effect is a comprehensive embodiment of many fac-
tors. To evaluate the visual effect of different methods, we made
a user-study. We invited 20 users to make scores about the visual
effect for ten examples. 1 stands for the poorest visual effect, and
10 represents the best visual effect. The average rating results are
shown in Fig. 18. From the histogram, it can be concluded that our
method produces the best visual effect for all the examples.

Fig. 19 illustrates the generating paths of two models by the
four methods, while Fig. 20 shows the actual printing results of
two models. As we can see from the results, zigzag paths are
uniform, but have serrated parts at the boundary due to staircase
effect. As for the contour-parallel algorithm, the staircase effect is
improved. However, printing material may be drawn out of the
paths due to the discontinuity of the paths for these two methods.
CFS method produces more under-fills or gaps. Comparatively
our method generates more uniform and smooth paths and can
effectively reduce gaps and visible artifacts.

5.8. Limitations

Our algorithm suffers from some deficiencies since it preserves
the weakness of contour-parallel path filling methods inherently,
that is, there are still some over-fills and under-fills in the final
printing results although our method reduces the proportion
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Fig. 17. Ratios of under-fills (a) and over-fills (b) on ten examples.

Fig. 18. The scores of visual effect for ten examples.

Fig. 19. Paths of two models generated by four path-planning methods.

Fig. 20. Printing results of two models.
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of over-fills and under-fills compared with other methods. In
addition, when solving the TSP problem using genetic algorithm,
the algorithm efficiency decreases as the number of holes in the
porous structure increases. Fortunately, we can divide each slice
into subregions for parallel computation to improve the efficiency
of the algorithm.

6. Conclusion

In this paper, we present an approach to generate printing
paths for a type of porous structures which contain lots of small
holes. Our work adopts the divide-and-conquer strategy. Each
slice of a porous structure is divided into subregions by solving
a salesman traveling problem using genetic algorithm, and then
each subregion is filled with a Fermat spiral curve. We provided
many examples to demonstrate the effectiveness and superior-
ity of our method and comparisons with other state-of-the-art
methods are also provided. Experimental results show that our
algorithm outperforms others methods in terms of material cost,
printing time and structural stability.

In the future work, we will investigate topology optimization
of porous structures which is a very important research topic.
Constructing more uniform printing paths using more efficient
algorithm is worthy of further study. Generalizing the work to
fill printing paths on surfaces is also very interesting.
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